# WALLULA GAP BUSINESS PARK ROADS 2023 GEOTECHNICAL REPORT

**JUNE 2023** 



Prepared for the Port of Walla Walla



214 E. Birch Street, Walla Walla, Washington 1901 N. Fir Street, La Grande, Oregon 2659 SW 4th Street, Suite 200, Redmond, Oregon 243 E. Main Street, Suite C, Hermiston, Oregon 103 Highway 82, Suite 1B, Enterprise, Oregon

# WALLULA GAP BUSINESS PARK ROADS 2023 GEOTECHNICAL REPORT

## PREPARED FOR THE PORT OF WALLA WALLA

#### **JUNE 2023**



#### ANDERSON PERRY & ASSOCIATES, INC.

Walla Walla, Washington La Grande, Redmond, Hermiston, and Enterprise, Oregon

Copyright 2023 by Anderson Perry & Associates, Inc.

Job No. 385-399

# **Table of Contents**

| Chapter 1 - Introduction and Scope of Work          | 1-1 |
|-----------------------------------------------------|-----|
| Chapter 2 - Existing Site Conditions                | 2-1 |
| Chapter 3 - General Site Improvement Considerations | 3-1 |
| Chapter 4 - Local Geology and Seismicity            | 4-1 |
| Chapter 5 - Characteristics of Subsurface Materials | 5-1 |
| Chapter 6 - Laboratory Testing                      | 6-1 |
| Chapter 7 - Engineering Analysis                    | 7-1 |
| Chapter 8 - Geotechnical Recommendations            | 8-1 |
| Chapter 9 - Conclusions                             | 9-1 |
| Chapter 10 - References                             |     |

### TABLES

| Table 7-1 | Stability Analysis Results                                  | 7-2 |
|-----------|-------------------------------------------------------------|-----|
| Table 7-2 | Summary of 2021 IBC and ASCE 7-16 Seismic Design Parameters | 7-3 |

### FIGURES

Figure 2-1 Vicinity Map Figure 2-2 Site Plan

### APPENDICES

Appendix A Classification Format and Legend, Boring, and Test Pit Logs
Appendix B Well Reports
Appendix C Slope Stability and Seepage Analysis Results
Appendix D Liquefaction Assessment

# Chapter 1 - Introduction and Scope of Work

This report provides an assessment of the on-site conditions for the proposed Port of Walla Walla (Port) Wallula Gap Business Park Roads 2023 project located in Walla Walla County, Washington. The information presented describes the *in-situ* soil conditions; a liquefaction assessment; observations of groundwater conditions; soil percolation information; slope considerations; and provides recommendations for site preparation, roadway and embankment design, and construction.

This report has been prepared for the exclusive use of the Port and the design team on the proposed Wallula Gap Business Park Roads 2023 project. The information was prepared in accordance with generally accepted geotechnical engineering practices. No other warranty, expressed or implied, is made. The recommendations presented are based on observed soil conditions in the field. Anderson Perry & Associates, Inc.'s (AP) opinion is the results of this investigation generally define the soil conditions, or the subsurface material, in a reasonable manner for the purpose intended.

# **Chapter 2 - Existing Site Conditions**

The Wallula Gap Business Park Roads 2023 project will be constructed approximately 2,900 to 10,400 feet east of Highway 12 and north of the intersection of Boise Cascade Road and Attalia East Road in Wallula, Washington. A location and vicinity map showing the site's general location is included as Figure 2-1.

The new roadways will initially connect to the existing intersection of Attalia Road and Peterson Road and will be generally located in Section 2, Township 7 North, Range 31 East. Future roads may be constructed in Section 11, Township 7 North, Range 31 East. The existing site is currently used for farming and includes two whole crop circles and portions of three additional crop circles. The ground around the crop circles is undeveloped and covered with vegetation consisting of grasses and sagebrush. The topography across the site generally consists of gently rolling foothills of an old sand dune formation. The site generally slopes down toward the west with the slope of the ground generally ranging from relatively flat to a few areas that are steeper than 15 percent. A site plan showing the existing topography is shown on Figure 2-2.

Utilities crossing the new roadway alignments include several irrigation lines, a large-diameter process water transmission line, gas lines, underground and overhead power lines, and possibly overhead fiber optics communication lines. These utilities are shown on the site plan (Figure 2-2).





# **Chapter 3 - General Site Improvement Considerations**

The new roadways will consist of approximately 2 to 4 miles of new and future roadways. The new roadways will be a continuation of Attalia Road, Peterson Road, and roadways not presently named.

Peterson Road will continue east for approximately one mile from its intersection with Attalia Road. Attalia Road will head north for approximately 1,400 feet, then head northeast for approximately 3,300 feet, and then head east for approximately 3,300 feet. A new roadway may be constructed along the east side of Section 2 and Section 11, Township 7 North, Range 31 East, and connect the new roadways with Worden Road or a new Highway 12 alignment in the future.

The pavement section for the new roadways will consist of 4.0 inches of hot mix asphalt (HMA) over 12.0 inches of crushed aggregate. The HMA section will be 36 feet wide. The road will have 6- to 8-foot-wide gravel shoulders (on both sides of the pavement section) that slope down with 6 horizontal:1 vertical (6H:1V) slopes. Proposed slopes adjacent to the gravel shoulders include 2.2H:1V cut and 2H:1V fill slopes.

Stormwater runoff will be managed on site through infiltration utilizing roadside ditches and rock check dams. Culverts will be placed beneath the new roadways within the bottom of existing low points and drainage basins on an as-needed basis.

The first phase of the proposed new roadway alignments is shown on the site plan (Figure 2-2).

# **Chapter 4 - Local Geology and Seismicity**

The proposed site is centrally located within the Columbia Plateau Physiographic Province. Geologic mapping (Schuster, 1994) indicates the site is overlain by Holocene-age dune sand.

The Natural Resource Conservation Service (NRCS) Soil Survey indicates the project site is overlain by soils consisting of silty sand (SM), sand with silt (SP-SM), and sandy silt (ML).

Through previous explorations, AP has found this area to be generally overlain by eolian sand with occasional interbedded layers of loess consisting of silt with varying amounts of sand. The eolian sand is typically underlain by gravel alluvium and the eolian and alluvial layers are underlain by basalt.

Test pit logs provide a record of the subsurface exploration for this project and are included in Appendix A. Well reports for wells and logs for soil borings and test pits located in the regional vicinity were reviewed and are included in Appendix B.

AP's observation during the subsurface exploration and the information from the reviewed well reports, test pit logs, and boring logs generally concur with the geologic mapping, the NRCS Soil Survey, and AP's experience in the area. The formations encountered at the site during the subsurface exploration are described in more detail in Chapter 5 - Characteristics of Subsurface Materials.

## Faulting

The following potentially active quaternary fault systems identified by the U.S. Geological Survey (USGS) are located in the site's regional vicinity:

- The west-to-northwest trending Wallula fault (Class A, Fault No. 846) is 2.9 miles southwest.
- A section of the northwest-trending portion of the Horse Heaven Hills Structure (Class A, Fault No. 567) is 8.0 miles west.
- Sections of the north-to-northeast trending Hite Fault System (Class A, Fault No. 845) are located southeast of the site. The Thorn Hollow section is 26.8 miles southeast and the Agency section is 33.4 miles southeast.

These faults have slip rates of less than 0.008 inches (0.2 millimeters) per year.

The faults near the site have the potential to generate a crustal earthquake with a Moment Magnitude  $(M_w)$  of 6.7 within 8 miles of the site with a 2.0 percent probability in 50 years. In addition to a possible local crustal earthquake, an intraslab earthquake with an  $M_w$  of 7.5 approximately 180 miles from the site and an interface earthquake with an  $M_w$  of 8.5 approximately 260 miles from the site does not increase the spectral accelerations above the values mapped in the 2021 International Building Code (IBC). Seismic design parameters are discussed in Chapter 7, Engineering Analysis.

## **Ground Rupture**

Due to the site's location relative to the faults in the site's general vicinity, the risk associated with a fault rupture is low.

## Liquefaction and Lateral Spreading

Ideal soils for liquefaction include loose saturated sands with little or no fines. The saturated silt layers are generally not expected to liquefy due to their high fines content. The gravel layers are not expected to be susceptible to liquefaction due to their high in-place relative densities. Conversely, sand near the ground surface may be susceptible to liquefaction if it becomes saturated during periods of high groundwater. A liquefaction assessment is described in further detail in Chapter 7, Engineering Analysis.

### Erosion

The various soils overlying the project site are highly susceptible to erosion (wind and water). Areas that are disturbed through earthwork should be stabilized with permanent vegetation or gravel surfacing. Source and flow control best management practices (BMPs) should be used to manage construction and post-construction runoff to prevent erosion.

## **Slope Stability**

Unsaturated 2 horizontal to 1 vertical (2H:1V) existing and cut slopes without surcharge loading will remain stable during static conditions and unsaturated 2.2H:1V existing and cut slopes without surcharge loading remain stable during seismic loading. These slopes have factors of safety greater than 1.0. Factors of safety that are less than 1.0 are considered unstable.

2H:1V fill slopes that have been constructed with adequate compaction will remain stable during static and seismic loading.

High groundwater will reduce the stability of steep slopes. Groundwater seepage through slopes indicates that slopes are saturated. Saturated 2.2H:1V slopes will not remain stable.

Surcharge loading from structures or traffic near slopes will also reduce the stability of existing and cut slopes. If surcharge loads are setback using the criteria from the 2021 IBC, the slopes will remain stable. The 2021 IBC setback criteria are conservative for some scenarios and loaded slopes may be evaluated on a case-by-case basis.

# Chapter 5 - Characteristics of Subsurface Materials

# Subsurface Exploration

On May 18, 2023, three hand auger holes were advanced and on May 22 and May 23, 2023, ten test pits were excavated at the proposed site to assess the general nature of the subsurface soils. The test pit and hand auger locations are shown on the site plan (Figure 2-2), and the test pit and hand auger logs are included in Appendix A. The test pits were excavated with a Caterpillar 315 excavator and a Caterpillar 325F excavator owned and operated by C&E Trenching, LLC.

The materials in each test pit and hand auger were visually classified, and soil samples were obtained during the explorations and retained for possible laboratory testing. The test pits and hand auger holes were logged during the subsurface investigation, and the final logs were prepared based on a review of the field logs and an examination of the soil samples. The soils were classified according to ASTM International (ASTM) D2488 classification of soils for engineering purposes.

## Soil Profile Summary

In general, a similar soil profile was observed in each test pit and hand auger hole. Topsoil generally consisting of sand to silty sand was encountered near the ground surface. The topsoil is underlain by Aeolian Dune Sand consisting of sand to silty sand. A layer of sandy silt was encountered in test pit TP-7. The Aeolian Dune Sand is underlain by alluvial gravel. The alluvial gravel was encountered only in TP-9. The test pits and hand augers were dug to a depth of 12.0 to 14.0 feet below the existing ground surface. Although bedrock was not encountered during the subsurface exploration, boring logs for soil borings and well reports for wells in the general vicinity of the site indicate basalt bedrock underlies the Aeolian Dune Sand and gravel alluvium formations. The Aeolian Dune Sand formation is also interbedded with various layers of silt to sandy silt (loess). The soil groups encountered at the site are discussed below.

# Topsoil

Topsoil generally consisting of sand to silty sand was encountered near the existing ground surface. The topsoil is light brown, nonplastic, and has an apparent density ranging from very loose to loose. The sand is generally fine. At the time of the exploration, the topsoil was damp. Scattered organics consisting of grass rootlets were encountered in the upper 6- to 8-inches.

# Aeolian Dune Sand

Aeolian Dune Sand consisting of sand to silty sand was encountered to a depth of approximately 13 feet below the existing ground surface. The sand is light brown to brown, dark brown, and black, nonplastic, and has an apparent density ranging from very loose to dense. The sand is mostly fine. Occasional layers of fine to coarse sand and layers of sand with traces of some fine to coarse gravel were also encountered during the subsurface exploration. Occasional weak cementation (caliche) was encountered in thin layers within the Dune Sand formation. At the time of the exploration, the Dune Sand ranged from dry to damp.

## **Interbedded Silt Layers**

A layer of sandy silt was encountered in TP-7. The silt is light brown, nonplastic, and has a consistency ranging from medium stiff to stiff. The silt was found to be dry during the subsurface exploration. Additional interbedded layers of silt to sandy silt are anticipated within the Aeolian Dune Sand formation.

### **Gravel Alluvium**

The gravel alluvium consists of gravel with sand, trace silt, and scattered cobbles. The gravel is subrounded and fine to coarse in size with colors ranging from brown to gray. The apparent density of the gravel alluvium ranges from dense to very dense. At the time of the exploration, the gravel alluvium was dry. Boring logs for soil borings and well reports for wells in the general vicinity of the site indicate the gravel layers may be encountered between a depth of 7 to over 230 feet.

### Basalt

Basalt bedrock was not encountered during the subsurface exploration. Boring logs for soil borings and well reports for wells in the general vicinity of the site indicate the surface of the underlying basalt formation ranges from about 45 to over 230 feet below the existing ground surface.

## Groundwater

Groundwater was not encountered in any of the test pits or hand auger holes. Boring logs for soil borings and well reports for wells in the general vicinity of the site indicate the static groundwater level ranges from 5.5 to 150 feet below the existing ground surface. Based on the subsurface exploration and the topography of the site along the proposed roadway alignments, seasonal high groundwater is generally anticipated below a depth of 12 feet below the existing ground surface. The natural groundwater level can be expected to fluctuate seasonally by several feet in this area, generally being highest in the late winter and early spring months. However, the groundwater level may also fluctuate in response to the irrigation season and cause the groundwater level to rise above natural levels.

# **Chapter 6 - Laboratory Testing**

No laboratory testing was conducted as part of this phase of the project.

# **Chapter 7 - Engineering Analysis**

## **Pavement Assessment and Design**

The proposed pavement section for the new roadways is 4 inches of HMA over 12 inches of compacted crushed aggregate. The project's pavement section was evaluated considering the subgrade encountered during the subsurface exploration and material likely to be used for embankment fill.

The following assumptions were used in the structural section assessment: a design life of 20 years, reliability of 90 percent, overall standard deviation of 0.45, an initial serviceability of 4.2, and a terminal serviceability of 2.25. An estimated soil resilient modulus ( $M_R$ ) of 15,000 pounds per square inch was selected for the anticipated compacted silty sand to sand subgrade. This value corresponds to a California Bearing Ratio value in the range of approximately 10 to 15.

The results of the assessment indicate the pavement section will provide a design Structural Number (SN) of approximately 3.3. This design will provide support for approximately 4.0 million equivalent single-axle loads (ESALs). If more than 4.0 million ESALs are anticipated on the new roadway over their design life, the pavement section should be modified to provide additional support.

## **Slope Stability Assessment**

The stability of the on-site and proposed slopes was calculated by dividing the forces resisting slope movement (soil strength) by the forces driving slope movement (surcharge loads, soil weight, seismic loading, and water). Slide2 is a computer program developed by Rocscience used to perform slope stability analysis based on slope geometry, soil strength, and groundwater conditions. Slide2 was used to analyze the on-site slope conditions.

The stability analysis utilized a friction angle of 32 degrees for cut slopes based on the assumption that the underlying soils will consist of undisturbed silty sand or sand. A friction angle of 34 degrees was utilized for fill slopes based on the assumption that embankment fill will consist of compacted silty sand or sand. A surcharge load of 240 pounds per square foot was applied to the roadway surface.

A peak ground acceleration (PGA) value of 0.262 g was calculated using ASCE 7-16. This PGA is associated with Site Class D and an earthquake event with a 2.0 percent probability in 50 years (2,475-year return period). Based on this PGA value, a horizontal seismic coefficient,  $k_h$  of 0.131, and a vertical seismic coefficient,  $k_v$  of 0.052 were calculated and utilized for seismic loading.

The results of the analysis indicate that 2H:1V unsaturated fill slopes will remain stable during seismic and static loading. The results of the analysis also indicate unsaturated 2 horizontal to 1 vertical (2H:1V or 50 percent) existing and cut slopes without surcharge loading (structure or traffic) remain stable during static conditions. 2H:1V unsaturated cut slopes may not remain stable during seismic conditions and could experience surface raveling, however, deep-seated failures (deeper than 18 inches) are not expected during seismic events. Unsaturated 2.2H:1V (45 percent) slopes without surcharge loading remain stable during seismic loading. These slopes have factors of safety greater than 1.0. Factors of safety that are less than 1.0 are considered unstable. AP is available to evaluate cut slopes with surcharge loading if these become part of the roadway designs.

High groundwater will reduce the stability of steep slopes. Groundwater seepage through slopes indicates that slopes are saturated. The results of the analysis indicate saturated 2H:1V (50 percent) and 2.2H:1V (45 percent) slopes will not remain stable during seismic loading. High groundwater can be mitigated by installing trench drains at the toe of slopes and above slopes under certain groundwater conditions. Although high groundwater is not anticipated during roadway construction, AP is available to provide recommendations for trench drain installation if groundwater is encountered.

The results of the stability analysis are included in Appendix C and a summary of the result for the various cut and fill conditions shown on Table 7-1.

|                                 | Friction<br>Angle | Load                      |               | Factor of Safety   | Factor of Safety |
|---------------------------------|-------------------|---------------------------|---------------|--------------------|------------------|
| Soil Type                       | (degrees)         | Condition                 | Slope         | (Surface Raveling) | (Deep Seated)    |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Static                    | 2H:1V (cut)   | 2H:1V (cut) 1.23   |                  |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Seismic                   | 2H:1V (cut)   | 0.94               | 1.00             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Static                    | 2.2H:1V (cut) | 1.37               | 1.50             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Seismic                   | 2.2H:1V (cut) | 1.02               | 1.10             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Static / High<br>GWT      | 2H:1V (cut)   | 1.07               | 1.20             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Seismic /<br>High GWT     | 2H:1V (cut)   | 0.80               | 0.90             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Seismic /<br>Trench Drain | 2H:1V (cut)   | 0.94               | 1.00             |
| Silty Sand (SM)<br>to Sand (SP) | 32                | Seismic /<br>Trench Drain | 2.2H:1V (cut) | 1.02               | 1.10             |
| Silty Sand (SM)<br>to Sand (SP) | 34                | Static                    | 2H:1V (fill)  | 1.35               | 1.50             |
| Silty Sand (SM)<br>to Sand (SP) | 34                | Seismic                   | 2H:1V (fill)  | 1.01               | 1.20             |

TABLE 7-1 Stability Analysis Results

## **Seismic Considerations**

Spectral accelerations are mapped in the 2021 IBC and the 2016 edition of American Society of Civil Engineers (ASCE) Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-16). The mapped values of these accelerations are based on a 2 percent probability of exceedance in 50 years, or a 2,475-year return period for Site Class B, and are shown as a percentage of gravity (g). Site Class B is defined as a geologic profile of the upper 100 feet consisting of rock. For the proposed site, the mapped spectral bedrock acceleration for short periods ( $S_s$ ) is 0.413 g and for 1-second period ( $S_1$ ) is 0.152 g. The mapped Maximum Considered Earthquake Geometric Mean ( $MCE_G$ ) value, also described as Peak Ground Acceleration (PGA), is 0.183 g.

Subsurface information was obtained from well reports for wells near the vicinity of the proposed site (copies of these well reports are included in Appendix B). This information was used to evaluate the site class for the proposed structures. Site Class D is appropriate for this site. Site Class D is defined as a geologic profile of the upper 100 feet consisting of a stiff soil profile with an average standard penetration resistance ( $\overline{N}$ ) value between 15 and 50 blows per foot. Site coefficient factors,  $F_{a}$ ,  $F_{v}$ , and  $F_{PGA}$  are applied to the mapped spectral accelerations to calculate the maximum considered earthquake spectral response accelerations.

Based on Site Class D and the mapped spectral accelerations, the following site coefficients were calculated for the project site: the maximum considered earthquake spectral response acceleration for short period ( $S_{MS}$ ) is 0.607 g and for a 1-second period ( $S_{M1}$ ) is 0.350 g. The 5 percent damped design spectral response acceleration for short period ( $S_{DS}$ ) is 0.404 g and for a 1-second period ( $S_{D1}$ ) is 0.233 g. The site-adjusted PGA ( $PGA_M$ ) is 0.262 g. A summary of the 2018 IBC and ASCE 7-16 seismic design parameters is shown in Table 7-2.

| Symbol                                   | Definitions                                              | Value (g) |  |
|------------------------------------------|----------------------------------------------------------|-----------|--|
| Ss                                       | Mapped spectral bedrock acceleration for short periods   | 0.413     |  |
| <i>S</i> <sub>1</sub>                    | Mapped spectral bedrock acceleration for 1-second period | 0.152     |  |
| PGA                                      | Spectral bedrock acceleration for MCE <sub>G</sub>       | 0.183     |  |
| Fa                                       | Site coefficient factor                                  | 1.470     |  |
| Fν                                       | Site coefficient factor                                  | 2.295     |  |
| F <sub>PGA</sub>                         | Site coefficient factor                                  | 1.434     |  |
| S <sub>MS</sub>                          | Maximum considered earthquake spectral response          | 0.607     |  |
| $(S_{MS} = F_a S_s)$                     | acceleration for short period                            |           |  |
| S <sub>M1</sub>                          | Maximum considered earthquake spectral response          | 0.350     |  |
| $(S_{M1}=F_vS_1)$                        | acceleration for 1-second period                         |           |  |
| <b>S</b> <sub>DS</sub>                   | 5 percent damped design spectral response acceleration   | 0.404     |  |
| $(S_{DS} = 2/3 S_{MS})$                  | for short period                                         |           |  |
| S <sub>D1</sub>                          | 5 percent damped design spectral response acceleration   | 0.233     |  |
| (S <sub>D1</sub> = 2/3 S <sub>M1</sub> ) | $(S_{D1} = 2/3 S_{M1})$ for 1-second period              |           |  |
| РGA <sub>M</sub>                         | Site-adjusted MCE <sub>G</sub>                           | 0.262     |  |

 TABLE 7-2

 Summary of 2021 IBC and ASCE 7-16 Seismic Design Parameters

## Liquefaction

An M<sub>w</sub> of 6.70 was calculated using USGS seismic deaggregation data associated with the potential seismic sources. A shear wave velocity of 1,200 feet per second (Site Class D) and a 2 percent probability of exceedance in 50 years, or a 2,475-year return period, were used in the analysis. In addition to the 2,475-year return periods were also evaluated.

A 50-foot soil profile was developed for the proposed site using information from the subsurface exploration, boring logs, and well reports. Standard penetration test blow counts (N values) were correlated for the soil profile based on information from the subsurface exploration, boring logs, and well reports.

Liquefaction by definition occurs when saturated cohesionless soils experience deformation as a result of a disturbance such as a seismic event. Consequently, soils that may be susceptible to liquefaction include loose, saturated sands with little or no fines.

The on-site saturated soils do not exhibit the properties of soils expected to facilitate liquefaction. The silt layers are not expected to liquefy due to their high fines content, and the gravel alluvium is not expected to liquefy due to its relative density. The Aeolian sand is generally not expected to liquefy as groundwater in the vicinity of the new roadways is expected to be deeper than 12 feet from the existing ground surface and the saturated layers of sand in these areas are anticipated to have sufficient density to resist liquefaction. However, loose sand near the ground surface may become susceptible to liquefaction if it becomes saturated during periods of high groundwater.

The results of the liquefaction analysis are included in Appendix D. Based on these results, a minimum safety factor against liquefaction of 1.8 was calculated for the 2,475-year event. A liquefaction hazards assessment is generally conducted, and hazard mitigation measures are evaluated if the safety factor against liquefaction is less than 1.2. Given the minimum safety factor of 1.8, liquefaction and lateral spreading are not anticipated during the design earthquake events (475-, 975-, or 2,475-year return periods).

# **Chapter 8 - Geotechnical Recommendations**

# Site Preparation

To prepare the site for the proposed improvements, the improvement areas should be stripped and grubbed within the limits of new construction to remove all grass, weeds, roots, and organic soil. Based on AP's explorations, stripping should generally remove the upper 6 inches. In drainage areas, where the ground receives more runoff, roots extend slightly deeper, and stripping should remove the upper 8 inches.

Additional stripping may also be required in localized areas if soil containing numerous organics is encountered. Topsoil may be stockpiled and used as cover soil over the proposed cut slopes but should not be used for fill material beneath the proposed roadway.

After the site has been stripped and excavated to the proposed subgrade elevation, the subgrade beneath the proposed roadway should be compacted to a minimum of 92 percent of the maximum dry density as determined by ASTM D1557 (American Association of State Highway and Transportation Officials [AASHTO] T180) or 95 percent of the maximum density as determined by ASTM D698 (AASHTO T99). If practical, after the subgrade is compacted, the improvement areas should be proof-rolled with a loaded dump truck to reveal any soft, unsuitable areas existing in the subgrade. Any soft areas should be over-excavated and backfilled with structural fill.

## **Reusability of On-Site Soil**

The on-site soil consisting of silty sand to sand may be utilized as structural fill material, provided the soil is at or below optimum moisture content at the time of placement and is basically free of debris and organic material.

## Structural Fill and Embankment Construction

Embankment construction or restoration of the grade in over-excavated areas beneath the proposed roadway will require the placement of structural fill. If the on-site silty sand-to-sand material is used as fill beneath the proposed roadway, it should be compacted to a minimum of 92 percent of the maximum dry density as determined by ASTM D1557 (AASHTO T180) or 95 percent of the maximum density as determined by ASTM D698 (AASHTO T99).

Based on various methods of conventional analysis, AP estimates the new roadway embankments could experience up to 4.0 inches of total settlement if the site is prepared as recommended herein. Most of this settlement will occur during construction of the embankments. Up to 1.0 inch of total settlement may occur after the roadway has been completed.

Import material consisting of any combination of silty sand, sand, or gravel may be utilized for structural fill provided the material is at or below optimum moisture content at the time of placement and is free of debris or deleterious material. The import material may be naturally occurring or be a manufactured product. The material should not exceed a maximum size of 4.0 inches in diameter.

Import material used as fill under the proposed roadway should be placed in 9-inch loose lifts and compacted to a minimum of 92 percent of the maximum dry density as determined by ASTM D1557

(AASHTO T180), 92 percent of Washington State Department of Transportation (WSDOT) Test Method 606, or 95 percent of ASTM D698 (AASHTO T99), as applicable for the material being used. If the imported material is too coarse to be tested pursuant to the test procedures, it should be compacted to a uniform, non-yielding condition. If heavy compaction equipment is utilized, the Engineer should be contacted to provide an alternate lift thickness recommendation if the contractor would prefer to use thicker lifts of fill.

The uniform and non-yielding condition of compacted fill should be verified with deflection testing. A deflection test should be conducted over the non-density testable in-place material for every 2 feet of fill placement. The deflection test should include the observation of compacted fill material beneath compaction equipment to verify the fill material has received adequate compaction and that no soft or pumping areas remain. Compaction should continue until there is negligible defection under the compaction equipment. Negligible defection is defined as being less than 1/8-inch of deflection or reaction under the compaction equipment.

Any structural fill or backfill placed on-site must be inspected and tested by a qualified materials testing laboratory to verify the specified compaction requirements are achieved.

### **Excavation Characteristics and Temporary Slope Considerations**

When applying Occupational Safety and Health Administration (OSHA) regulations, AP anticipates silt layers to be Type B soils and the Aeolian Dune Sand and gravel alluvium to be Type C soils. OSHA recommends a maximum temporary slope inclination of 1H:1V for Type B soils and 1.5H:1V for Type C soils.

### **Permanent Slope Considerations**

Based on the stability analysis, permanent cut and fill slopes should be no steeper than 2H:1V. Surface raveling of the cut slopes should be expected during an earthquake event with a 2.0 percent probability in 50 years (2,475-year return period). Surface raveling will most likely be limited to the upper 18 inches and can be repaired in the event of an earthquake of this magnitude. Alternatively cut slope should be no steeper than 2.2H:1V if surface raveling is undesirable during a seismic event.

High groundwater will reduce the stability of steep slopes. AP should be contacted to provide recommendations for trench drain installation if groundwater is encountered during roadway construction.

Although the cut and fill slopes generally appear to remain stable during the various loading conditions, the on-site soils are still highly susceptible to erosion (wind and runoff) and should be stabilized with permanent vegetation.

### **Site Stabilization**

The disturbed cut and fill slopes should be vegetated with hydroseed as soon as possible after summer and cooler weather permits seed germination. The hydroseed should be a specifically designed hydromulch consisting of fiber, fertilizer, seed, and tackifier. The seed mix should be appropriate for the Wallula climate. Best management practices should be utilized to manage runoff until permanent vegetation has become established. Straw wattles (or similar product) appear to be a suitable solution to manage runoff. If wattles are utilized, they should be installed perpendicular to the runoff flow direction and parallel to the slope contour. Narrow trenches should be dug across the slope to seat wattles and prevent runoff passing beneath or around the wattles. The wattles should be staked in place. Wattles should be spaced approximately 5 to 10 feet apart up the slopes within the erodible soil formations.

In disturbed areas, where permanent vegetation may be difficult to establish due to the lack of nutrient-rich soils, the slopes should be covered with a minimum of 6.0 inches of topsoil. The topsoil removed during clearing and grubbing may be utilized for cover soil. Alternatively, a natural fiber matting (staked in place) that satisfies the requirements of the National Pollutant Discharge Elimination System Construction Stormwater Discharge Permit 1200-C (construction stormwater permit) may be utilized.

### **Utility Trenches**

Depending on the depths of utilities, all excavation sidewalls should be properly sloped or shored to conform to applicable OSHA regulations. In many locations the Aeolian Dune Sand has very little silt material binding the formation and caving should be expected if temporary slopes and trench walls are excavated steeper than recommended.

Trench backfills should be placed and compacted in general accordance with Section 7-08 of the current version of the WSDOT Standard Specifications for Road, Bridge, and Municipal Construction (Standard Specifications).

The on-site soils should not be used as backfill in the pipe zone. Backfill placed and compacted in the pipe zone should consist of gravel backfill for pipe zone bedding material in accordance with Section 9-03.12(3) of the Standard Specifications or crushed aggregate in accordance with Section 9-03.9(3) of the Standard Specifications.

The on-site soils may be utilized for general trench backfill above the pipe zone if the material meets the same criteria described for structural fill. If the on-site soils do not meet the criteria of structural fill, they should be removed and replaced with gravel backfill for foundations in accordance with Section 9-03.12 of the current version of the Standard Specifications.

Backfill placed 2.0 feet or more from the surface should be compacted to a minimum of 88 percent of the maximum dry density as determined by ASTM D1557 (AASHTO T180), 88 percent of WSDOT Test Method 606, or 90 percent of ASTM D698 (AASHTO T99), as applicable for the material being used. Backfill placed in the upper 2.0 feet beneath the proposed improvements should be compacted to a minimum of 92 percent of the maximum dry density as determined by ASTM D1557 (AASHTO T180), 92 percent of WSDOT Test Method 606, or 95 percent of ASTM D698 (AASHTO T99), as applicable for the material being used.

When hand-operated compaction equipment is used, the backfill should be placed in loose lifts less than 4.0 inches thick. If heavy compaction equipment is used, the loose lifts may be 9.0 inches thick. Heavy compaction equipment should not be used over the pipe until pipe zone bedding material and the trench backfill are at least 2.0 feet above the crown of the pipe.

If groundwater is encountered in the utility trenches, free-draining granular backfill such as sand, sandy gravel, or crushed rock with less than 2 percent passing the No. 200 sieve should be used as backfill below the groundwater surface. A geotextile meeting the requirements in Section 9-33.2 of the Standard Specifications for Class C, nonwoven, moderate survivability, underground drainage fabric should be placed over free-draining backfill prior to placing additional backfill. If standing water is encountered, dewatering of the trenches will be required prior to backfilling.

### **Pavement Design**

The subgrade beneath the proposed roadway should be compacted to a minimum of 92 percent of the maximum dry density as determined by ASTM D1557 (AASHTO T180) or 95 percent of the maximum density as determined by ASTM D698 (AASHTO T99). After the subgrade is compacted, the subgrade should be proof-rolled with a loaded dump truck to reveal any soft, unsuitable areas existing in the subgrade. Any soft areas should be over-excavated and backfilled with structural fill.

The proposed pavement section for the Wallula Gap Business Park roads is 4 inches of HMA over 12 inches of compacted crushed aggregate. The crushed aggregate will include 4.0 inches of crushed surfacing top course over 8.0 inches of crushed surfacing base course. The crushed surfacing should meet Section 9-03.9(3) of the Standard Specifications. The crushed aggregate beneath the asphalt section should be compacted to a minimum of 95 percent of the maximum density as determined by WSDOT Test Method 606 or 95 percent of the maximum dry density as determined by ASTM D1557. The HMA should be compacted to a minimum of 91 percent of the maximum theoretical density.

AP recommends a geotextile meeting the requirements in Section 9-33.2 of the Standard Specifications for soil stabilization fabric be used to reinforce the subgrade prior to placing the structural base rock. Fabric should be stretched taut and wrinkle-free. Adjacent pieces of fabric should be overlapped a minimum of 18 inches and staked in place prior to placing crushed aggregate.

## Site Drainage

Stormwater runoff may be managed on-site through infiltration. Roadside ditches were identified by the design team as the most likely system to infiltrate runoff.

Based on the soils encountered during the subsurface exploration, a coefficient of percolation, K, of approximately 0.15 gallon per minute per square foot (0.02 cubic foot per minute per square foot) of bottom area may be used for sizing the roadside ditches. This rate is equivalent to 14 inches per hour. The percolation rate should be adjusted using a degradation factor selected by the design engineer responsible for stormwater management.

Roadside ditches should be constructed with a minimum of 5 feet of separation between the bottoms of the ditches and the highest anticipated groundwater levels.

### **Inclement Weather Construction**

If earthwork is scheduled during freezing conditions, care should be taken to prevent subgrade materials in improvement areas from freezing. If subgrade materials freeze, they should be over-excavated and replaced with structural fill. Alternatively, frozen subgrade may be allowed to thaw and compacted to a

minimum of 92 percent of the maximum dry density as determined by ASTM D1557 (AASHTO T180) or 95 percent of the maximum density as determined by ASTM D698 (AASHTO T99).

Proof-rolling frozen subgrade material with a loaded dump truck will be ineffective to identify soft areas or verify non-yielding conditions. Proof-rolling should be conducted after compaction has been completed and when the subgrade is not frozen.

# **Chapter 9 - Conclusions**

This report was prepared in a general manner and should provide adequate information for the design team to prepare site preparation specifications and design roadway and infrastructure improvements for the proposed Wallula Gap Business Park Roads 2023 project.

Should specific problems arise during the course of the project that may not be covered adequately in this report, if changes occur in any of the assumptions made, or if the site excavation reveals anything different than what is described herein, we recommend contacting the engineer so appropriate action can be taken. Any questions regarding this investigation should be directed to Andrew Robinson, P.E., with AP, 214 East Birch Street, Walla Walla, Washington 99362, telephone (509) 529-9260.

# **Chapter 10 - References**

- 1. AASHTO. AASHTO T99 Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in.) Drop.
- 2. AASHTO. AASHTO T180 Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop.
- 3. ASCE Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-16).
- 4. ASTM International. ASTM Volume 04.08 Soil and Rock (I): D420 D5876.
- 5. Bowles, Joseph E. *Engineering Properties of Soils and Their Measurement*. United States of America: McGraw-Hill, 1970, 1978, 1986, and 1992.
- 6. Das, Braja M. *Principles of Geotechnical Engineering, Third Edition*. Boston: PWS Publishing Company, 1985, 1990, and 1994.
- 7. Fetter, C.W. *Applied Hydrogeology, Fourth Edition*. Upper Saddle River, New Jersey: Prentice Hall, Inc., 1994 and 2001.
- 8. International Building Code (IBC). 2021 IBC.
- 9. Koerner, Robert M., Ph.D., P.E. *Designing with Geosynthetics, Fourth Edition*. Upper Saddle River, New Jersey: Prentice Hall, Inc., 1986, 1990, 1994, and 1998.
- 10. Kramer, Steven L. *Geotechnical Earthquake Engineering*. Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia, 1996.
- 11. Lambe, William T. and Whitman, Robert V. Soil Mechanics. New York: John Wiley & Sons, 1969.
- 12. PanGeo (2008). Summary Geotechnical Overview, Wallula Gap Business Park, Walla Walla County, Washington 2008.
- 13. Occupational Safety & Health Administration (OSHA). OSHA Technical Manual.
- 14. Schuster. Geologic Map of the Walla Walla 1:100,000 Quadrangle, Washington, 1994.
- 15. U.S. Geological Survey. Online Seismic Design Applications.
- 16. Washington State Department of Ecology (Ecology). *Stormwater Management Manual for Eastern Washington*.
- 17. Washington State Department of Transportation (WSDOT). 2009 Materials Manual.
- 18. Washington State Department of Transportation (WSDOT). *Standard Specifications for Road, Bridge, and Municipal Construction,* 2022.

# APPENDIX A Classification Format and Legend and Test Pit Logs

#### GENERAL SOIL DESCRIPTIVE SEQUENCE

UNDRAINED SHEAR STRENGTH SPT N-VALUE

- CONSISTENCY (FINE-GRAINED SOILS) / APPARENT DENSITY (COARSE-GRAINED SOILS) 1.
  - SOIL NAME USCS DESIGNATION
- 2. 3.
- 4. COLOR 5. PLASTICITY

TERM

#### CONSISTENCY OF COHESIVE SOILS

<u>≤</u>0.125 TSF 0.125 - 0.25 TSF 0.25 - 0.50 TSF 0.5 - 1.0 TSF 1.0 - 2.0 TSF 2.0. TSF VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF HARD 2.0+ TSF

#### SOIL CONSTITUENT DEFINITIONS (BASED ON PARTICLE SIZE)

| BOULDERS      | RETAINED ON A 12-INCH OPENING.                                                                             |
|---------------|------------------------------------------------------------------------------------------------------------|
| COBBLES       | PASSING A 12-INCH OPENING AND<br>RETAINED ON THE 3.0-INCH SIEVE.                                           |
| COARSE GRAVEL | PASSING THE 3.0-INCH SIEVE AND<br>RETAINED ON THE 3/4-INCH SIEVE.                                          |
| FINE GRAVEL   | PASSING THE 3/4-INCH SIEVE AND<br>RETAINED ON THE NO.4 SIEVE.                                              |
| COARSE SAND   | PASSING THE NO.4 SIEVE AND<br>RETAINED ON THE NO.10 SIEVE.                                                 |
| MEDIUM SAND   | PASSING THE NO.10 SIEVE AND<br>RETAINED ON THE NO.40 SIEVE.                                                |
| FINE SAND     | PASSING THE NO.40 SIEVE AND<br>RETAINED ON THE NO.200 SIEVE.                                               |
| SILT          | SOIL PASSING THE NO. 200 SIEVE.<br>PLASTICITY INDEX (PI) PLOTS BELOW<br>THE A-LINE ON THE PLASTICITY CHART |
| CLAY          | SOIL PASSING THE NO. 200 SIEVE. PI<br>PLOTS ON OR ABOVE THE A-LINE ON<br>THE PLASTICITY CHART.             |

#### SOIL COLOR

- SOIL SAMPLES CHANGE COLOR AFTER THEY ARE REMOVED 1. FROM THEIR IN-SITU ENVIRONMENT. SOIL COLORS ARE DESCRIBED AS SOON AS SAMPLES ARE TAKEN.
- 2. COMMON COLORS ARE UTILIZED: BROWN, YELLOW, GRAY, RED, GREEN, WHITE, ETC.
- 3. SECONDARY COLORS MAY BE UTILIZED TO PROVIDE MORE CLARIFICATION. FOR EXAMPLE, GRAY BROWN
- ADDITIONAL ADJECTIVES MAY BE UTILIZED TO PROVIDE MORE DETAIL: DARK, LIGHT, MOTTLED, STREAKED, ETC.

#### MOISTURE

| DRY  | ABSENCE OF MOISTURE, DRY TO THE TOUCH. DUSTY.                                               |
|------|---------------------------------------------------------------------------------------------|
| DAMP | SLIGHT PRESENCE OF MOISTURE. MOISTURE CONTENT<br>IS BELOW PLASTIC LIMIT FOR COHESIVE SOILS. |

- SOIL IS DARKENED, BUT MOISTURE IS NOT VISIBLE. MOISTURE CONTENT IS NEAR OR SLIGHTLY ABOVE MOIST PLASTIC LIMIT FOR COHESIVE SOILS.
- WET VISIBLE FREE WATER. TYPICALLY SATURATED.

#### CEMENTATION

**Panderson** 

associates, inc.

б

| WEAK     | SOIL CRUMBLES WITH HANDLING OR<br>SLIGHT FINGER PRESSURE. |
|----------|-----------------------------------------------------------|
| MODERATE | SOIL CRUMBLES WITH CONSIDERABLE<br>FINGER PRESSURE.       |
| STRONG   | SOIL DOES NOT NOT CRUMBLE WITH                            |

CONSIDERABLE FINGER PRESSURE.

MOISTURE GRAIN SIZE DISTRIBUTION

7.

8

11.

<u><</u>2 BLOWS/FT. 2 - 1 "

- 4 BLOWS/FT.

5 - 8 BLOWS/FT.

30+ BLOWS/FT.

9 - 15 BLOWS/FT. 16 - 30 BLOWS/FT.

- ANGULARITY
- OTHER CHARACTERISTICS: CEMENTATION, TEXTURE, DILATANCY, STRUCTURE ETC. ADDITIONAL CONSTITUENTS: FILL MATERIALS, DEBRIS, ORGANIC MATTER, ETC. 10.

  - ORIGIN / FORMATION NAME

#### APPARENT DENSITY (NON-COHESIVE) SOILS

| TERM         | SPT N-VALUE          |
|--------------|----------------------|
| VERY LOOSE   | <u>≤</u> 4 BLOWS/FT. |
| LOOSE        | 5 - 10 BLOWS/FT.     |
| MEDIUM DENSE | 11 - 30 BLOWS/FT     |
| DENSE        | 31 - 50 BLOWS/FT     |
| VERY DENSE   | 50+ BLOWS/FT.        |

#### SOIL CLASSIFICATION (SOIL NAME)

- PRIMARY AND SECONDARY SOIL CONSTITUENTS ARE UTILIZED TO SELECT A SOIL NAME IN ACCORDANCE WITH THE UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) FLOW CHARTS PROVIDED ON FIGURES A2 AND A3.
- 2. ADDITIONAL SOIL CONSTITUENTS ARE UTILIZED IN THE SOIL NAME IN ACCORDANCE WITH THE USCS CHARTS.
- 3. THE FOLLOWING QUANTIFYING TERMS ARE OFTEN UTILIZED TO PROVIDE ADDITIONAL CLARITY:

|                                     | FERCENTAGE                           |                                                                                                                          |
|-------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| TRACE<br>SOME<br>MOSTLY             | <5%<br>30% TO 50%<br>250%            | THESE TERMS ARE GENERALLY<br>USED FOR SOIL CONSTITUENTS.                                                                 |
| OCCASIONAL<br>SCATTERED<br>NUMEROUS | <10%<br>10 TO 20%<br><u>&gt;</u> 20% | THESE TERMS ARE USED FOR<br>ADDITIONAL CONSTITUENTS<br>INCLUDING: COBBLES, BOULDERS,<br>FILL, DEBRIS AND ORGANIC MATTER. |

DEDCENTACE DV WEICHT

#### PLASTICITY

TEDM

- NONPLASTIC AN 1/8-INCH TREAD CANNOT BE ROLLED AT ANY MOISTURE CONTENT. VERY LOW DRY STRENGTH. (DRY SOIL CUBE FALLS APART).
- AN 1/8-INCH TREAD CAN BARELY BE ROLLED. SOIL LUMP CANNOT BE FORMED WHEN DRIER THAN THE PLASTIC LIMIT. LOW DRY STRENGTH (EASY TO CRUSH DRY SOIL IOW CUBE WITH FINGERS).
- MEDIUM AN 1/8-INCH TREAD CAN EASILY BE ROLLED IN A SHORT TIME. THE TREAD CANNOT BE RE-ROLLED AFTER REACHING PLASTIC LIMIT. SOIL LUMP CRUMBLES WHEN DRIER THAN THE PLASTIC LIMIT. MEDIUM DRY STRENGTH (DIFFICULT TO CRUSH DRY SOIL CUBE WITH FINGERS).
- A LONG TIME IS TAKEN IN ROLLING TO REACH THE PLASTIC LIMIT. THE THREAD CAN BE RE-ROLLED SEVERAL TIMES AFTER REACHING PLASTIC LIMIT. SOIL LIMP CAN BE FORMED WITHOUT CRUMBLING AFTER REACHING THE HIGH PLASTIC LIMIT. HIGH DRY STRENGTH (CAN NOT CRUSH DRY SOIL CUBE WITH FINGERS).

#### **GRAIN SIZE DISTRIBUTION**

- I. GRAVEL IS DESCRIBED AS FINE AND/OR COARSE.
- 2. SAND IS DESCRIBED AS FINE, MEDIUM AND/OR COARSE.
- 3. COBBLES AND BOULDERS ARE DESCRIBED IN TERMS OF INCHES IN DIAMETER.

#### ANGULARITY (COARSE SAND TO BOULDER SIZE)

| ANGULAR    | PARTICLES HAVE SHARP EDGES, RELATIVELY<br>FLAT SIDES AND UNPOLISHED SURFACES. |
|------------|-------------------------------------------------------------------------------|
| SUBANGULAR | SIMILAR TO ANGULAR PARTICLES BUT<br>PARTICLES HAVE ROUNDED EDGES.             |
| SUBROUNDED | PARTICLES HAVE NEARLY PLANE SIDE BUT<br>WELL-ROUNDED EDGES AND CORNERS.       |
| ROUNDED    | PARTICLES HAVE SMOOTH CURVED SIDES<br>AND NO EDGES.                           |

PORT OF WALLA WALLA WALLULA GAP BUSINESS PARK ROADS 2023

WALLA WALLA COUNTY, WASHINGTON

FIGURE

CLASSIFICATION FORMAT AND LEGEND

Α1

#### **ORIGIN / SOIL FORMATION**

| FILL       | SOIL HAS BEEN PLACED BY HUMAN MEANS.             |
|------------|--------------------------------------------------|
| ALLUVIUM   | DEPOSITED BY FLOWING WATER (STREAM, RIVER, ETC.) |
| LACUSTRINE | DEPOSITED AT THE BOTTOM OF LAKES.                |
| CALICHE    | CEMENTED SOIL FORMATION (CALCIUM CARBONATE).     |

COLLUVIUM ROCK DEPOSITED AT THE BASE OF STEEP SLOPE (TALUS). AEOLIAN

WIND BLOW DEPOSIT (DUNE SAND, LOESS).

WIND BLOW SILT.

LOESS

#### FLOW CHART FOR IDENTIFYING COARSE-GRAINED SOILS

| UNIFIED SOIL CLASSIFICATION SYSTEM<br>(USCS) |                   | <15% SAND     |                   | ≥15% SAND                                                                                   |                              | USCS SYMBOL                                                       |                   |       |
|----------------------------------------------|-------------------|---------------|-------------------|---------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-------------------|-------|
| > 50% RETAINED ON N0.200 SIEVE               |                   | SOIL NAME     | GRAPHIC<br>SYMBOL | SOIL NAME                                                                                   | GRAPHIC<br>SYMBOL            | WELL-<br>GRADED                                                   | POORLY-<br>GRADED |       |
|                                              | <u>&lt;</u> 5% Fi | NE5           | GRAVEL            |                                                                                             | GRAVEL<br>WITH SAND          |                                                                   | GW                | GP    |
|                                              | 10% FINES         | SILT<br>FINES | GRAVEL WITH SILT  |                                                                                             | GRAVEL WITH<br>SILT AND SAND | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | GW-GM             | GP-GM |
| GRAVEL ><br>% GRAVEL ><br>% GAND             |                   | CLAY<br>FINES | GRAVEL WITH CLAY  | 0000<br>0000                                                                                | GRAVEL WITH<br>CLAY AND SAND | 0000                                                              | GW-GC             | GP-GC |
| NO SPIND                                     | 159 EWEG          | SILT<br>FINES | SILTY GRAVEL      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | SILTY GRAVEL<br>WITH SAND    | 00000000000000000000000000000000000000                            | G                 | м     |
|                                              | 213% PINES        | CLAY<br>FINES | CLAYEY GRAVEL     | 2000<br>000<br>000                                                                          | CLAYEY GRAVEL<br>WITH SAND   | 800<br>800<br>800                                                 | G                 | с     |

|                              |                  |               | <15% GRA       | VEL               | <u>≥</u> 15% GRA             | VEL               | USCS S          | YMBOL             |
|------------------------------|------------------|---------------|----------------|-------------------|------------------------------|-------------------|-----------------|-------------------|
|                              |                  |               | SOIL NAME      | GRAPHIC<br>SYMBOL | SOIL NAME                    | GRAPHIC<br>SYMBOL | WELL-<br>GRADED | POORLY-<br>GRADED |
|                              | <u>&lt;</u> 5% F | FINES         | SAND           |                   | SAND<br>WITH GRAVEL          |                   | SW              | SP                |
| 6.000                        | LOW EINES        | SILT<br>FINES | SAND WITH SILT |                   | SAND WITH SILT<br>AND GRAVEL |                   | 5W-5M           | 5P-5M             |
| SAND<br>% SAND ≥<br>% GPAVEI | 10% FINES        | CLAY<br>FINES | SAND WITH CLAY |                   | SAND WITH CLAY<br>AND GRAVEL |                   | SW-SC           | SP-SC             |
| 10 OKAVEL                    | LEY EWEG         | SILT<br>FINES | SILTY SAND     |                   | SILTY SAND<br>WITH GRAVEL    |                   | 5               | м                 |
|                              | 213% PINES       | CLAY<br>FINES | CLAYEY SAND    |                   | CLAYEY SAND<br>WITH GRAVEL   |                   | 5               | с                 |

#### SOIL LOG LEGEND

GRAB SAMPLE

#### SAMPLE TYPE

 $\boxtimes$ 



3.0-INCH O.D. THIN-WALLED SAMPLE

**IN-SITU & LABORATORY TESTING RESULTS** 

- TORVANE READING
- TSF TON PER SQUARE FEET
- SPT, N-VALUE
- MOISTURE CONTENT, % •



| IORGANIC F                     | INE-GRAINED                  | SOIL                            |                              |                            |                |                   |                    | ≥ 50    |
|--------------------------------|------------------------------|---------------------------------|------------------------------|----------------------------|----------------|-------------------|--------------------|---------|
| IIFIED SOIL CLAS               | SSIFICATION SYSTE            | EM (USCS)                       |                              | SOIL NAME                  | USCS<br>SYMBOL | GRAPHIC<br>SYMBOL | USCS<br>SYMBOL     | GRAPHIC |
|                                | <15%<br>NO                   | S RETAINED ON<br>1. 200 SIEVE   |                              | SILT                       | ML             |                   | МН                 |         |
| -                              | 15 TO 25%                    | % SA<br>% GR                    | ND ≥<br>?AVEL                | SILT WITH SAND             | ML             |                   | MH                 |         |
| SILT                           | KETAINED ON<br>NO. 200 SIEVE | * 5A<br>% GR                    | ND <<br>?AVEL                | SILT WITH GRAVEL           | ML             |                   | МН                 |         |
| PLASTIC INDEX                  |                              | % 5AND ≥                        | <15%<br>GRAVEL               | SANDY SILT                 | ML             |                   | МН                 |         |
| PLUTS<br>BELOW A-LINE          | ≥30%<br>RETAINED ON          | % GRAVEL                        | ≥15%<br>GRAVEL               | SANDY SILT<br>WITH GRAVEL  | ML             | 0-0-0-0           | МН                 |         |
|                                | NO. 200 SIEVE                | % 5AND <                        | <15%<br>SAND                 | GRAVELLY SILT              | ML             |                   | МН                 |         |
|                                |                              | » GKAVEL                        | ≥15%<br>5AND                 | GRAVELLY SILT<br>WITH SAND | ML             |                   | МН                 |         |
| F                              | <15%<br>NC                   | & RETAINED ON<br>). 200 SIEVE   | ETAINED ON<br>200 SIEVE CLAY |                            | CL             |                   | СН                 |         |
|                                | IS TO 25%<br>RETAINED ON     | % 5A<br>% GR                    | AND <u>&gt;</u><br>?AVEL     | CLAY WITH SAND             | CL             |                   | СН                 |         |
| CLAY                           | NO. 200 SIEVE                | % SAND <<br>% GRAVEL            |                              | CLAY WITH GRAVEL           | CL             |                   | СН                 |         |
| PLASTIC INDEX<br>(PI)<br>PLOTS |                              | % SAND <u>&gt;</u><br>% GDAVIEI | <15%<br>GRAVEL               | SANDY CLAY                 | CL             |                   | СН                 |         |
| UN OR<br>ABOVE A-LINE          | 230%<br>RETAINED ON          | ~ UKAVEL                        | ≥15%<br>GRAVEL               | SANDY CLAY<br>WITH GRAVEL  | CL             |                   | СН                 |         |
|                                | NU. 200 SIEVE                | % SAND <<br>% GRAVEI            | <15%<br>5AND                 | GRAVELLY CLAY              | CL             |                   | СН                 |         |
|                                |                              |                                 | ≥15%<br>5AND                 | GRAVELLY CLAY<br>WITH SAND | CL             |                   | СН                 |         |
| DITIONAL SOI                   | L LOG GRAPHIC                | <u>SYMBOLS</u>                  |                              |                            |                |                   |                    |         |
| TOP50                          | ΊL                           | FILL                            |                              | ASPHALT                    |                |                   | CLAYEY 5           | 5/LT    |
| ELL INSTALLA                   | TION & BACKFILI              | L GRAPHIC S                     | YMBOLS                       |                            |                |                   |                    |         |
| <u> Г</u> вкои                 | NDWATER LEVEL MEAS.          | URED ON DATE S                  | 5HOWN                        |                            |                |                   |                    |         |
| COLD ASPHA                     | PATCH<br>ALT                 | SILICA<br>BACKF                 | SAND<br>ILL                  | CONCRET<br>BACKFILL        | rE<br>-        |                   | PVC WEL.<br>CASING | L       |
| 000<br>00<br>BACKF             | EL FILL                      | BENTO.<br>BACKF                 | NITE CHIP<br>ILL             | FLUSH M<br>MONUMEI         | OUNT<br>JT     |                   | SLOTTED<br>SCREEN  | ' WELL  |
|                                |                              | POR                             |                              | ALLA WALLA                 | DS 2022        |                   | <b>F</b> 14        | GUPE    |
| anders                         | on <sup>w</sup>              | WALLA W                         | ALLA CO                      | UNTY, WASHING              | GTON           |                   | Γľ                 |         |
| associates,                    | , mc.                        |                                 |                              |                            | <b>F^-</b> ··  |                   |                    | A3      |

| ELEVATION<br>(DEPTH)<br>FEET | DN<br>) CLASSIFICATION OF MATERIAL                                                                            | LOG | SAMPLES | TESTS | COMMENTS                                          |
|------------------------------|---------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------------------------------------------------|
| (0)                          | LOOSE SAND (SP); TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |     |         |       | GRASS AND WEEDS AT<br>SURFACE                     |
| -                            | LOOSE SAND (SP); TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                       |     | 5-1-1   |       |                                                   |
| -<br>451.0 -<br>(5.0)<br>-   | LOOSE SAND WITH SILT (SP-SM): BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                      |     | 5-1-2   |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -<br>-<br>446.0 -<br>(10.0)  | MEDIUM DENSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE<br>SAND, (AEOLIAN DUNE SAND)                |     | 5-1-3   |       |                                                   |
| -                            | BOTTOM OF TEST PIT AT 12.0 FEET                                                                               |     | 5-1-4   |       | NO GROUNDWATER<br>OBSERVED ON 5/22/2023           |

| DEPTH           | () CLASSIFICATION OF MATERIAL                                                                                      | LOG     | SAMPLES       | TESTS | COMMENTS                                          |
|-----------------|--------------------------------------------------------------------------------------------------------------------|---------|---------------|-------|---------------------------------------------------|
| (0)<br>(0)      | VERY LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |         |               |       | GRASS AND WEEDS AT<br>SURFACE                     |
| -               | VERY LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                       |         |               |       |                                                   |
| -               |                                                                                                                    |         | 5-2-1         |       |                                                   |
| 92.0 -<br>(5.0) |                                                                                                                    |         |               |       |                                                   |
| -               | BECOMES LIGHT BROWN, DRY                                                                                           |         | 5-2-2         |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -<br>-<br>870   | LOOSE SAND WITH SILT (SP-SM); LIGHT BROWN, NONPLASTIC, DRY TO DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)              |         | 5-2-3         |       |                                                   |
| 0.0)<br>-       | LOOSE SAND (SP): TRACE SILT, LIGHT BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                      |         | X 5-2-4       |       | NO GROUNDWATER                                    |
| -               | BOTTOM OF TEST PIT AT 12.0 FEET                                                                                    | <u></u> |               |       | UDSERVED UN 5/22/2023                             |
| -               | PORT OF WALLA W                                                                                                    |         | A<br>ADS 2023 |       | FIG                                               |
| an<br>pe        | walla Walla COUNTY, W/                                                                                             | ASHIN   | IGTON         | -     | A4                                                |
|                 | TEST PIT LOG                                                                                                       | 3       |               |       | λ                                                 |

| EVATION<br>DEPTH<br>FEET | ON<br>I) CLASSIFICATION OF MATERIAL                                                                           | LOG | SAMPLES | TESTS | COMMENTS                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------|-----|---------|-------|-------------------------------|
| 4.0 –<br>(0)             | LOOSE SILTY SAND (SM): LIGHT BROWN, NONPLASTIC, DAMP, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |     |         |       | GRASS AND WEEDS AT<br>SURFACE |
| -                        | LOOSE TO MEDIUM DENSE SILTY SAND (SM); LIGHT BROWN, NONPLASTIC, DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)       |     |         |       |                               |
| -                        |                                                                                                               |     | 5-3-1   |       |                               |
| 29.0 -<br>5.0)<br>-      | BECOMES DENSE, VERY WEAK CEMENTATION FROM 6 TO 8 FEET                                                         |     | 5-3-2   |       | TEST PIT BACKFILLED           |
| -                        | BECOMES MEDIUM DENSE                                                                                          |     |         |       | MATERIAL                      |
| -                        |                                                                                                               |     | 5-3-3   |       |                               |
| <i>)</i><br>-            | MEDIUM DENSE SAND WITH SILT (SP-SM); LIGHT BROWN, NONPLASTIC, DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)         |     | × 5-3-4 |       | NO GROUNDWATER                |



| LEVATI<br>(DEPTI<br>FEET | ION<br>H) CLASSIFICATION OF MATERIAL                                                                          | LOG | SAMPLES | TESTS | COMMENTS                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------------------------------------------------|
| 46.0 -<br>(0)            | LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |     |         |       | GRASS AND WEEDS AT<br>SURFACE                     |
| -                        | LOOSE SAND (SP); TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                       |     | 5-5-1   |       |                                                   |
| 541.0 -<br>(5.0)<br>-    |                                                                                                               |     | 5-5-2   |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
|                          | BECOMES MEDIUM DENSE, DARK BROWN TO BLACK, FINE TO MEDIUM SAND                                                |     | 5-5-3   |       |                                                   |
| - 536.0<br>(10.0)<br>-   | BECOMES MEDIUM DENSE TO DENSE, BROWN, FINE SAND                                                               |     |         |       | NO GROUNDWATER                                    |
| -                        | BOTTOM OF TEST DIT AT 12 O FEET                                                                               |     | 5-5-4   |       | OBSERVED ON 5/22/2023                             |

| DEPTH)<br>FEET       | ) CLASSIFICATION OF MATERIAL                                                                                         | LOG                      | SAMPLES                | TESTS | COMMENTS                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------|---------------------------------------------------|
| " <sup>44.1</sup> "  | LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DRY TO DAMP, FINE<br>SAND, OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |                          |                        |       | GRASS AND WEEDS AT<br>SURFACE                     |
| -                    | LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                              |                          |                        |       |                                                   |
| -                    |                                                                                                                      |                          | 5-6-1                  |       |                                                   |
| 539.1-<br>(5.0)      | BECOMES LIGHT BROWN, NONPLASTIC, DRY TO DAMP                                                                         |                          | 1                      | l     |                                                   |
| -                    |                                                                                                                      |                          | 5-6-2                  |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -                    | BECOMES MEDIUM DENSE TO DENSE, DARK BROWN                                                                            |                          |                        | ļ     |                                                   |
| -                    |                                                                                                                      |                          | 5-6-3                  | ļ     |                                                   |
| 534.1-<br>10.0)<br>- |                                                                                                                      |                          |                        |       |                                                   |
|                      |                                                                                                                      |                          | 5-6-4                  | ļ     | NO GROUNDWATER<br>OBSERVED ON 5/22/2023           |
| -                    | BOTTOM OF TEST PIT AT 12.0 FEET                                                                                      |                          |                        |       |                                                   |
| an                   | PORT OF WALLA W<br>WALLULA GAP BUSINESS PAR<br>WALLA WALLA COUNTY, W                                                 | /ALL/<br>:K RO/<br>ASHIN | A<br>ADS 2023<br>IGTON | 3     | FIGURE                                            |
| a as:                | TEST PIT LOG                                                                                                         | S                        |                        |       | λ Αθ                                              |

#### **TEST PIT TP-7** ELEVATION SAMPLES TESTS COMMENTS (DEPTH) CLASSIFICATION OF MATERIAL LOG FEET 534.2 (0) LOOSE SAND WITH SILT (SP-SM); BROWN, NONPLASTIC, DRY, FINE SAND, GRASS AND WEEDS AT OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) SURFACE LOOSE SAND WITH SILT (SP-SM); LIGHT BROWN, NONPLASTIC, DRY TO DAMP, FINE SAND, (AEOLIAN DUNE SAND) 5-7-1 529.2 -(5.0) LOOSE SILTY SAND (SM); LIGHT BROWN, NONPLASTIC, DRY, FINE SAND, 26 (AEOLIAN DUNE SAND) +15-7-2 TEST PIT BACKFILLED WITH EXCAVATED MATERIAL MEDIUM STIFF TO STIFF SANDY SILT (ML); LIGHT BROWN, NONPLASTIC, DRY, FINE SAND, (AEOLIAN DUNE SAND) 5-7-3 524.2 (10.0) NO GROUNDWATER 5-7-4 OBSERVED ON 5/23/2023 BOTTOM OF TEST PIT AT 12.0 FEET



| ELEVATIO                    | ON<br>) CLASSIFICATION OF MATERIAL                                                                                                                                                                                      | LOG | SAMPLES | TESTS | COMMENTS                                          |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------------------------------------------------|
| (0)                         | LOOSE SAND (SP): TRACE SILT, BROWN, NONPLASTIC, DRY, FINE TO COARSE<br>SAND, OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL)                                                                                                  |     |         |       | GRASS AND WEEDS AT<br>SURFACE                     |
| -                           | MEDIUM DENSE TO DENSE SAND (SP); TRACE SILT, LIGHT BROWN, NONPLASTIC,<br>DRY, FINE TO COARSE SAND, WEAK CEMENTATION (CALICHE), (AEOLIAN DUNE<br>SAND)                                                                   |     | 5-9-1   |       |                                                   |
| - 408.9                     |                                                                                                                                                                                                                         |     |         |       |                                                   |
| (5.0) -                     | MEDIUM DENSE TO DENSE SAND (5P): TRACE SILT AND GRAVEL, LIGHT DROWN,<br>NONPLASTIC, DRY, FINE SAND, FINE TO COARSE GRAVEL, SUBROUNDED,<br>OCCASIONAL COBBLES TO B-INCH DIAMETER, (ALLUVIUM)                             |     | 5-9-2   |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -<br>403.9 –<br>(10.0)<br>- | DENSE TO VERY DENSE SAND WITH GRAVEL (SP); TRACE SILT, LIGHT BROWN,<br>NONPLASTIC, DRY, FINE TO COARSE SAND, FINE TO COARSE GRAVEL,<br>SUBROUNDED, OCCASIONAL COBBLES TO B-INCH DIAMETER, (ALLUVIUM)                    |     | 5-9-3   |       |                                                   |
| -                           | DENSE TO VERY DENSE GRAVEL WITH SAND (GP); LIGHT BROWN, NONPLASTIC,<br>DRY, FINE TO COARSE SAND, FINE TO COARSE GRAVEL, SUBROUNDED,<br>OCCASIONAL COBBLES TO 8-INCH DIAMETER, WEAK CEMENTATION (CALICHE),<br>(ALLUVIUM) |     | 5-9-4   |       | NO GROUNDWATER<br>OBSERVED ON 5/23/2023           |
|                             | BOTTOM OF TEST PIT AT 14.0 FEET                                                                                                                                                                                         |     |         |       |                                                   |

| LEVATIO<br>(DEPTH<br>FEET | ON<br>) CLASSIFICATION OF MATERIAL                                                                                              | LOG                                                | SAMPLES           | TESTS | COMMENTS                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------|-----------------------------------------|
| 45.0 -<br>(0)             | LOOSE SAND WITH SILT (SP-SM): TRACE SILT, LIGHT BROWN, NONPLASTIC, DRY,<br>FINE SAND, OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) | त्राः सः म<br>अन्त्रे स्वर्धेः<br>अन्त्रे स्वर्धेः |                   |       | GRASS AND WEEDS AT<br>SURFACE           |
| -                         | MEDIUM DENSE TO DENSE SAND WITH SILT (SP-SM); LIGHT BROWN,<br>NONPLASTIC, DRY TO DAMP, FINE SAND, (AEOLIAN DUNE SAND)           |                                                    |                   |       |                                         |
| -                         |                                                                                                                                 |                                                    | 5-10-1            |       |                                         |
| 440.0 –<br>(5.0)          |                                                                                                                                 |                                                    |                   |       | TEGT DIT BACKEWIED                      |
| -                         | MEDIUM DENSE TO DENSE SAND (SP): TRACE SILT, LIGHT BROWN, NONPLASTIC,<br>DRY, FINE TO MEDIUM SAND, (AEOLIAN DUNE SAND)          |                                                    | 5-10-2            |       | MITH EXCAVATED<br>MATERIAL              |
| -                         | BECOMES VERY WEAKLY CEMENTED                                                                                                    |                                                    | 5-10-3            |       |                                         |
| 435.0 –<br>(10.0)<br>_    | BECOMES FINE SAND                                                                                                               |                                                    |                   |       |                                         |
| -                         | BOTTOM OF TEST DIT AT 12 O FEET                                                                                                 |                                                    | 5-10-4            |       | NO GROUNDWATER<br>OBSERVED ON 5/23/2023 |
|                           | DUTUM OF TEST FIT AT 12.0 FEET                                                                                                  |                                                    |                   |       |                                         |
|                           | PORT OF WALLA W                                                                                                                 | ALL                                                | A                 |       |                                         |
| )<br>an<br>as             | wallula GAP BUSINESS PARI<br>WALLA WALLA COUNTY, WA<br>sociates, inc.                                                           | k ro.<br>Ashin                                     | ADS 2023<br>IGTON | 5     |                                         |
|                           | K TEST PIT LOGS                                                                                                                 | 5                                                  |                   |       | λ <sup>Δ</sup>                          |

# HAND AUGER HA-1

| ELEVATIO              | ON<br>) CLASSIFICATION OF MATERIAL                                                                            | LOG | SAMPLES            | TESTS | COMMENTS                                          |
|-----------------------|---------------------------------------------------------------------------------------------------------------|-----|--------------------|-------|---------------------------------------------------|
| (0) - (0)             | LOOSE SAND WITH SILT (SP-SM); BROWN, NONPLASTIC, DRY, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |     |                    |       | WHEAT STUBBLE AT<br>SURFACE                       |
| -                     | LOOSE SAND WITH SILT (SP-SM); LIGHT BROWN, NONPLASTIC, DRY TO DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)         |     | 5-1-1              |       |                                                   |
| 523.1 -<br>(5.0)<br>- |                                                                                                               |     | 5-1-2              |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -<br>-<br>518.1 -     | LOOSE TO MEDIUM DENSE SILTY SAND (SM): LIGHT BROWN, NONPLASTIC, DRY,<br>FINE SAND, (AEOLIAN DUNE SAND)        |     | 5-1-3              |       |                                                   |
| -                     | LOOSE SAND WITH SILT (SP-5M); LIGHT BROWN, NONPLASTIC, DAMP, FINE<br>SAND, (AEOLIAN DUNE SAND)                |     | ∑ 5-1-4<br>∑ 5-1-5 |       | NO GROUNDWATER<br>OBSERVED ON 5/18/2023           |
| -                     | BOTTOM OF TEST PIT AT 13.0 FEET                                                                               |     |                    |       |                                                   |

## HAND AUGER HA-2

| FEET                | CLASSIFICATION OF MATERIAL                                                                                                | LOG      | SAMPLES | TESTS | COMMENTS                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|----------|---------|-------|---------------------------------------------------|
| (0)                 | LOOSE SAND (SP); TRACE SILT, DARK BROWN TO GRAY, NONPLASTIC, DRY,<br>FINE SAND, OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |          |         |       | WHEAT CROP AT SURFACE                             |
| -                   | LOOSE SAND (SP); TRACE SILT, DARK BROWN TO GRAY, NONPLASTIC, DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)                      |          |         |       |                                                   |
| 68.8                |                                                                                                                           |          | 5-2-1   |       |                                                   |
| (5. <u>0</u> )<br>- |                                                                                                                           |          |         |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| -                   |                                                                                                                           |          | 5-2-2   |       |                                                   |
| 63.8 -<br>10.0)     | LOOSE SAND WITH SILT (SP-SM); BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                                  |          | 5-2-3   |       |                                                   |
| -                   | LOOSE SAND (SP); TRACE SILT, DARK BROWN TO GRAY, NONPLASTIC, DAMP,<br>FINE SAND, (AEOLIAN DUNE SAND)                      |          | 5-2-4   |       | NO GROUNDWATER                                    |
| +                   | BOTTOM OF TEST PIT AT 13.0 FEET                                                                                           | <u> </u> |         | ļ     | UDSERVEN UN 5/18/2023                             |

## HAND AUGER HA-3

| ELEVATIO<br>(DEPTH)<br>FEET | ON<br>CLASSIFICATION OF MATERIAL                                                                              | LOG | SAMPLES | TESTS | COMMENTS                                |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|-----|---------|-------|-----------------------------------------|
| (0)                         | LOOSE SAND WITH SILT (SP-SM): BROWN, NONPLASTIC, DRY, FINE SAND,<br>OCCASIONAL ORGANICS (ROOTLETS), (TOPSOIL) |     |         |       | POTATO CROP AT SURFACE                  |
| -                           | LOOSE SAND WITH SILT (SP-5M): BROWN, NONPLASTIC, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                      |     | 5-3-1   |       |                                         |
| -<br>541.9 -<br>(5.0)       |                                                                                                               |     |         |       | TEST PIT BACKFILLED<br>WITH EXCAVATED   |
| -                           |                                                                                                               |     | 5-3-2   |       | MATERIAL                                |
| -<br>536.9 –<br>(10.0)<br>- |                                                                                                               |     | 5-3-3   |       |                                         |
| _                           | BOTTOM OF TEST PIT AT 13.0 FEET                                                                               |     | 5-3-4   |       | NO GROUNDWATER<br>OBSERVED ON 5/18/2023 |



# APPENDIX B Test Pit Logs, Boring Logs, and Well Reports


| (DEPTH<br>FEET         | ON<br>H) CLASSIFICATION OF MATERIAL                                                                                                                                | LOG | SAMPLES                | TESTS | COMMENTS                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|-------|---------------------------------------------------|
| 40.0 -<br>(0) -        | LOOSE SILTY SAND (SM); LIGHT BROWN, DAMP, NONPLASTIC, FINE SAND,<br>SCATTERED ORGANICS (ROOTLETS) IN UPPER 6.0 INCHES, (TOPSOIL)                                   |     | <b>∑</b> <i>S</i> −1−1 |       | 0.10 TSF                                          |
| -                      | LOOSE SAND WITH SILT (SP-SM); LIGHT BROWN, DAMP, NONPLASTIC, FINE<br>SAND, (AEOLIAN DUNE SAND)                                                                     |     | S−1−2                  |       | 0.10 TSF                                          |
|                        | LOOSE TO MEDIUM DENSE SAND (SP); TRACE SILT, GRAY, DAMP, NONPLASTIC,<br>FINE TO MEDIUM SAND, THIN INTERBEDDED LAYERS OF SLIGHT CEMENTATION,<br>(AEOLIAN DUNE SAND) |     | S−1−3                  |       | 0.20 TSF                                          |
| 435.0 -<br>(5.0)<br>-  |                                                                                                                                                                    |     |                        |       |                                                   |
|                        |                                                                                                                                                                    |     |                        |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
|                        | BECOMES WITH TRACE COARSE GRAVEL, SUBROUNDED, (ALLUVIAL)                                                                                                           |     | S−1−4                  |       |                                                   |
| 430.0 -<br>(10.0)<br>- | BECOMES MOSTLY FINE SAND                                                                                                                                           |     |                        |       |                                                   |
|                        | BECOMES WITH TRACE FINE TO COARSE GRAVEL, SUBROUNDED, (ALLUVIAL)                                                                                                   |     |                        |       | NO GROUNDWATER<br>OBSERVED ON                     |
| 425.0 ·<br>(15.0)      | BOTTOM OF TEST PIT AT 14.0 FEET                                                                                                                                    |     |                        |       | 5/3/2018                                          |



## ELEVATION SAMPLES LOG TESTS (DEPTH) FEET CLASSIFICATION OF MATERIAL COMMENTS 432.0 (0) VERY LOOSE TO LOOSE SILTY SAND (SM): LIGHT BROWN, DAMP, NONPLASTIC, FINE SAND, SCATTERED ORGANICS (ROOTLETS) IN UPPER 6.0 INCHES, (TOPSOIL) 0.05 TSF X S−2−1 0.05 TSF 0.10 TSF LOOSE SAND WITH SILT (SP-SM); LIGHT BROWN, DAMP, NONPLASTIC, FINE SAND, (AEOLIAN DUNE SAND) 0.20 TSF SOFT SILT (ML), LIGHT BROWN, LOW PLASTICITY, DAMP, (ALLUVIUM) 427.0 (5.0) TEST PIT BACKFILLED WITH EXCAVATED MATERIAL LOOSE SILTY SAND (SM); LIGHT BROWN, DAMP, NONPLASTIC, FINE SAND, (AEOLIAN DUNE SAND) X 5-2-2 422.0 - (10.0) BECOMES MEDIUM DENSE SAND WITH SILT (SP-SM) NO GROUNDWATER OBSERVED ON 5/3/2018 BOTTOM OF TEST PIT AT 14.0 FEET 417.0 (15.0) PORT OF WALLA WALLA FIGURE **PROJECT ELK ROAD** anderson perry a associates, inc.

WALLULA, WASHINGTON

**JUNE 2018 TEST PIT LOGS** 

### **TEST PIT TP-2**

**A3** 



| LEVATI<br>(DEPTH<br>FEET   | ION<br>H) CLASSIFICATION OF MATERIAL                                                                                                                                                                                                            | LOG                   | SAMPLES    | TESTS | COMMENTS                                          |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------|---------------------------------------------------|
| (ó) -                      | VERY LOOSE TO LOOSE SILTY SAND (SM); LIGHT BROWN, DAMP, NONPLASTIC,<br>FINE SAND, SCATTERED ORGANICS (ROOTLETS) IN UPPER 6.0 INCHES, (TOPSU                                                                                                     | ))(L)                 | S−4−1      | 2     | 0.05 TSF                                          |
| -                          | SOFT TO MEDIUM STIFF SANDY SILT (ML); LIGHT BROWN, DAMP, NONPLASTIC,<br>FINE SAND, (LOESS)                                                                                                                                                      |                       | ∑ S-4-2    |       | 0.10 TSF<br>0.15 TSF                              |
| 419.7 -<br>(5.0)<br>-<br>- | LOOSE SILTY SAND (SM); LIGHT BROWN, DAMP, NONPLASTIC, FINE SAND,<br>(AEOLIAN DUNE SAND)<br>INTERBEDDED SANDY SILT LAYERS                                                                                                                        |                       | 开始行动的 化合合合 |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| 414.7 -<br>10.0)<br>-      | LOOSE TO MEDIUM DENSE SAND WITH SILT (SP-SM); LIGHT BROWN, DAMP,<br>NONPLASTIC, FINE SAND, (AEOLIAN DUNE SAND)                                                                                                                                  |                       | S−4−3      |       |                                                   |
| 409.7 ·<br>(15.0)          | INTERBEDDED SILTY SAND LAYERS<br>MEDIUM STIFF TO STIFF SILT WITH SAND (ML); TRACE GRAVEL, LIGHT BROW<br>DAMP, NONPLASTIC, COARSE GRAVEL, SUBROUNDED, OCCASIONAL COBBLES,<br>FINE TO MEDIUM SAND, (ALLUVIUM).<br>BOTTOM OF TEST PIT AT 14.0 FEET | N                     | S-4-4      |       | NO GROUNDWATER<br>OBSERVED ON<br>5/3/2018         |
|                            |                                                                                                                                                                                                                                                 |                       |            |       | ,<br>,                                            |
|                            |                                                                                                                                                                                                                                                 |                       |            |       |                                                   |
|                            | PORT OF WALLAN<br>PROJECT ELK<br>WALLULA, WASHI<br>JUNE 2018                                                                                                                                                                                    | WALLA<br>ROAD<br>NGTO | N          |       | FIGURE<br>A5                                      |

| LEVATION<br>(DEPTH)<br>FEET                   | CLASSIFICATION OF MATERIAL                                                                                                                                            | LOG                               | SAMPLES | TESTS | COMMENTS                                          |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|-------|---------------------------------------------------|
| 2.4<br>(0) VERY LOOS<br>NONPLASTI<br>ORGANICS | SE TO LOOSE SILTY SAND (SM): TRACE GRAVEL, LIGHT BROWN<br>IC, FINE SAND, FINE TO COARSE GRAVEL, SUBROUNDED, SCAT<br>(ROOTLETS) IN UPPER 8.0 INCHES, (TOPSOIL)         | I, DAMP,<br>TERED                 | S-5-1   |       | 0.05 TSF                                          |
| VERY LOOS<br>BROWN, DA<br>SUBROUND            | SE TO LOOSE SAND WITH SILT (SP-SM); TRACE GRAVEL, LIGH<br>AMP, NONPLASTIC, FINE SAND, FINE TO COARSE GRAVEL,<br>ED, OCCASIONAL COBBLES UP TO 6-INCH DIAMETER, (ALLUVI | т 1 1 1<br>1 1 1<br>ИМ) 1 - 1 - 1 | ∑ S-5-2 |       | 0.05 TSF                                          |
| -<br>THIN INTER<br>(5.0)                      | BEDDED GRAVEL LAYERS                                                                                                                                                  |                                   |         | •     | 0.05 TSF                                          |
| -                                             |                                                                                                                                                                       |                                   |         |       | TEST PIT BACKFILLED<br>WITH EXCAVATED<br>MATERIAL |
| MEDIUM DE<br>DAMP, FIN<br>18-INCH D           | ENSE TO DENSE SANDY GRAVEL (GP); TRACE SILT, GRAY TO ,<br>E TO COARSE GRAVEL, SUBROUNDED, SCATTERED COBBLES U,<br>HAMETER, (ALLUVIUM)                                 |                                   |         |       |                                                   |
| -                                             |                                                                                                                                                                       |                                   |         |       | NO GROUNDWATER<br>OBSERVED ON<br>5/3/2018         |
| ВОТТОМ О                                      | F TEST PIT AT 12.0 FEET                                                                                                                                               |                                   |         |       |                                                   |

| LEVATI<br>(DEPTH<br>FEET | ON<br>H) CLASSIFICATION OF MATERIAL                                                                                                                                                       | LOG                                          | SAMPLES | TESTS | COMMENTS             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|-------|----------------------|
| 25.0 -<br>(0)<br>-       | LOOSE SAND WITH SILT (SP-SM), TRACE GRAVEL, LIGHT BROWN, DAMP, FINE<br>GRAVEL, SUBROUNDED, SCATTERED ORGANICS IN UPPER 6 INCHES, (TOPSOIL)                                                |                                              |         |       | 0.10 TSF             |
| -                        | LOOSE SAND WITH SILT (SP-SM); TRACE GRAVEL, LIGHT BROWN, DAMP, FINE<br>GRAVEL, SUBROUNDED, (AEOLIAN DUNE SAND)                                                                            | -H-d=+<br>  - - +<br>  - +-  -<br>  - - -  - | S−6−1   |       | 0.10 TSF             |
| -                        | BECOMES WITH SOME GRAVEL,                                                                                                                                                                 |                                              |         |       | 0.15 TSF<br>0.15 TSF |
| 120.0 -<br>(5.0)         | LOOSE SAND WITH SILT AND GRAVEL (SP-SM): TRACE GRAVEL, LIGHT BROWN,<br>DAMP, FINE GRAVEL, SUBROUNDED, SLIGHT CEMENTATION IN LAYERS AND<br>AROUND GRAVEL, (CALICHE)                        | 0 P 9                                        |         |       |                      |
| -                        | LOOSE SAND WITH SILT (SP-SM); TRACE GRAVEL, GRAY, DRY TO DAMP, FINE<br>TO COARSE SAND, FINE TO COARSE GRAVEL, SUBROUNDED, SCATTERED<br>COBBLES UP TO 8-INCH DIAMETER, (AEOLIAN DUNE SAND) | <u> </u>                                     | ∑ S−6−2 |       |                      |
| -                        | MEDIUM DENSE SAND (SP); TRACE SILT, LIGHT BROWN, DAMP, FINE SAND,<br>(AEOLIAN DUNE SAND)                                                                                                  |                                              |         |       |                      |
| 415.0 -<br>10.0)<br>-    | BOTTOM OF TEST PIT AT 10.0 FEET                                                                                                                                                           |                                              |         |       |                      |
|                          | PORT OF WALLA WA<br>PROJECT ELK RO<br>WALLULA, WASHING                                                                                                                                    |                                              | N       |       | FIGURE               |
| & as                     | JUNE 2018                                                                                                                                                                                 | is                                           |         |       | λ A6                 |

|                                                         |                   |            |                                                                                                                                               |       | RE                            | ECC            | R             |                         | = E                                       | BORE                                          | -10        | DI      | LE             | Ξ:                 | E     | 3H   | 1-(       | 05         |            |                   |                                                                                              | 1                                     | Sheet 1 of 5 |
|---------------------------------------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|----------------|---------------|-------------------------|-------------------------------------------|-----------------------------------------------|------------|---------|----------------|--------------------|-------|------|-----------|------------|------------|-------------------|----------------------------------------------------------------------------------------------|---------------------------------------|--------------|
| CLII<br>PRC<br>PRC                                      | ENT<br>DJE<br>DJE | CT:        | Rockwool<br>Project 67 Due Diligence<br>NO: 31405932                                                                                          | 9     |                               | S'<br>El<br>IN | TART<br>ND DA | DATE:<br>ATE:<br>ATION: | Fe<br>Fe                                  | ebruary 06,<br>ebruary 07,<br>0.0°            | 202<br>202 | 3<br>3  |                |                    |       |      |           | E          |            | VAT<br>DRD<br>DRD | ION: 491.4 ft (Existing Groun<br>INATES: N: 289254.2 ft E: 2045<br>SYS: SP WA South FIPS 460 | nd)<br>5746.2 ft<br>02 Ft             |              |
| LOC                                                     | CAT               | ON         | : Atallia, WA                                                                                                                                 |       |                               | С              | ONTR          | ACTOR                   | R: Ho                                     | olt Services,                                 | Inc        |         |                |                    |       |      |           | H          | IOR        | RZ D              | ATUM: NAD83 VERT DA                                                                          | TUM: NAVD88                           |              |
| (                                                       | (1)               | DD         | MATERIAL PROFI                                                                                                                                | LE    |                               |                |               | S                       | SAMPI                                     | LES                                           |            | W       | ATE            | R CO               | INTEN | NT G | GRAD      | DATIC      | )N %       | ENT %             | AG                                                                                           | SPT N Value                           | NS ER        |
| TH (ft                                                  | LL RIG            | METH       |                                                                                                                                               | S     | TTA                           | ELEV.          |               | Hammer<br>ASTN<br>140-  | Automatic,<br>1 D 1586, Blo<br>Ib hammer, | 1401b, 30° drop<br>ows per 6 in<br>30-in drop |            | н       | Plast<br>Limit | tic & Li<br>ts (%) | iquid |      | ΈL        | Q          | S          | CONTE             | ESTIN                                                                                        | PENETRATION<br>RESISTANCE<br>BLOWS/FT | NUDWAT       |
| DEF                                                     | DRI               | DRILL      | DESCRIPTION                                                                                                                                   | nsc   | STR/<br>PLO                   | DEPTH<br>(ft)  | NUMBER        | TYPE                    | REC %                                     | BLOWS                                         | N-VALUE    | O<br>NP | Wate<br>Vate   | er Cont<br>Nonpla  | istic | -150 | GRAV      | SAN        | FINE       | ORGANIC           | ADDI<br>LAB 1                                                                                | 20 40 60 80                           | GROUI        |
| and a                                                   |                   |            | Topsoil; grass.<br>Qd (Dune sand)                                                                                                             |       | <u>ماند ماند</u><br>ماند ماند | 0.0            |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
| 1 1 2 3 3 3 4 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                   |            | (SP-SM) Poorly graded SAND<br>with silt, fine, few non-plastic<br>fines; tannish gray, locally<br>lamindated; medium dense to<br>dense.       | SP-SM |                               | 483.4          | S-1           | SS                      | 87                                        | 6-6-10                                        | 16         |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
| 8                                                       |                   |            | (SM) Silty SAND, fine to medium,<br>subangular, little non-plastic<br>fines; gray, laminated to stratified<br>with sand; moist, dense to very |       |                               | 8.0            |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
| 10<br>10                                                |                   |            | dense.<br>Qfs (Touchet beds)                                                                                                                  |       |                               |                |               |                         |                                           |                                               |            |         |                |                    |       | -    |           |            |            |                   |                                                                                              |                                       |              |
| 11                                                      | Int               |            |                                                                                                                                               |       |                               |                | S-2           | SS                      | 100                                       | 13-17-17                                      | 34         | 0       |                |                    |       | -    | 0         | 80         | 20         |                   | 23965: Sieve Analysis                                                                        |                                       |              |
| 12<br>13<br>14                                          | B-58 truck mo     | Mud Rotary |                                                                                                                                               |       |                               |                |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
| 16                                                      |                   |            | - 15.5 ft: 1/4-inch silt lens                                                                                                                 | W     |                               |                | S-3           | SS                      | 80                                        | 22-28-29                                      | 57         |         |                |                    |       |      |           |            |            |                   |                                                                                              | •                                     |              |
| 17<br>18<br>19                                          |                   |            |                                                                                                                                               | S     |                               |                |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
| 21                                                      |                   |            |                                                                                                                                               |       |                               |                | S-4           | SS                      | 100                                       | 26-27-31                                      | 58         |         |                |                    |       |      |           |            |            |                   |                                                                                              | •                                     |              |
| 22 23 24 25                                             |                   |            | Operational data in the D                                                                                                                     |       |                               |                |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       |              |
|                                                         | I                 |            | Communed on Next Page                                                                                                                         |       |                               |                |               |                         |                                           |                                               |            |         |                |                    |       |      |           |            |            |                   |                                                                                              | RE                                    | /:           |
| HAN                                                     | /ME               | ER 1       | TYPE: Automatic, 140lb, 30" d                                                                                                                 | rop   |                               |                |               |                         |                                           | 11                                            | -          |         |                |                    |       |      |           |            |            |                   |                                                                                              |                                       | 2            |
| Golder Lo                                               | a Imperi          | al / Soil- | Gradation 2 / Golder - 3 Imperial US / ASTM D2487 Auto (most common                                                                           | ASTM  | 2023-04-13                    |                |               |                         |                                           |                                               |            |         |                |                    |       |      | LO(<br>CH | GGE<br>ECK | ED:<br>KED | J. /              | Anderson E<br>Anderson E                                                                     | DATE: Feb 06, 2<br>DATE: Apr 10, 2    | 023<br>023   |

Г

CLIENT:

PROJECT:

Rockwool

PROJECT NO: 31405932 LOCATION:

Project 67 Due Diligence Atallia, WA

**RECORD OF BOREHOLE: BH-05** START DATE: February 06, 2023

CONTRACTOR: Holt Services, Inc.

February 07, 2023

END DATE:

INCLINATION: -90.0°

ELEVATION: 491.4 ft (Existing Ground) COORDINATES: N: 289254.2 ft E: 2045746.2 ft COORD SYS: SP WA South FIPS 4602 Ft VERT DATUM: NAVD88 HORZ DATUM: NAD83

|          |                  | D          | MATERIAL PROFI                                                                                                                                                                | LE     |              |                        |        | 5                     | SAMP                                     | LES                                             |         | W        | /ATI      | ERC     | CON             | TENT     | GRA   | DAT  | ON %  | % IV      |                 | SP   | ΤN    | /alue        | 8.0   |
|----------|------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|------------------------|--------|-----------------------|------------------------------------------|-------------------------------------------------|---------|----------|-----------|---------|-----------------|----------|-------|------|-------|-----------|-----------------|------|-------|--------------|-------|
| H (ft)   | - RIG            | ETHO       |                                                                                                                                                                               |        | 4            | ELEV.                  |        | Hammer<br>ASTN<br>140 | Automatic,<br>A D 1586, Bi<br>-Ib hammer | 140lb, 30° drop<br>ows per 6 in<br>. 30-in drop |         | н        | Pla       | astic 8 | Liqu            | d        |       |      |       | ONTEN     | IONAL           |      | PENET | RATION       | ATION |
| DEPT     | DRILI            | DRILL M    | DESCRIPTION                                                                                                                                                                   | nscs   | STRAL        | DEPTH<br>(ft)          | NUMBER | TYPE                  | REC %                                    | BLOWS                                           | N-VALUE | O N<br>P | P SZ-     | Non     | onten<br>plasti | -125 (%) | GRAVE | SAND | FINES | ORGANIC C | ADDIT<br>LAB TE | 20   | 40 6  | S/FT<br>0 80 | GROUN |
| 26       |                  |            | (SM) Silty SAND, fine to medium,<br>subangular, little non-plastic<br>fines; gray, laminated to stratified<br>with sand; moist, dense to very<br>dense.<br>Qfs (Touchet beds) |        |              |                        | S-5    | SS                    | 100                                      | 25-37-46                                        | 83      |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 28       |                  |            | (SM) Silty SAND, fine, little non-<br>plastic fines; gray, laminated;<br>moist, very dense.                                                                                   | SM     |              | _4 <u>63.4</u><br>28.0 |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| - 30     |                  |            |                                                                                                                                                                               |        |              |                        | S-6    | SS                    | 100                                      | 23-49-44                                        | 93      |          |           |         |                 |          |       |      |       |           |                 |      |       | •            |       |
| - 32     |                  |            | (SP-SM) Poorly graded SAND<br>with silt, fine to medium, few non-<br>plastic fines; gray, laminated to                                                                        |        |              | <u>458.4</u><br>33.0   |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 35       |                  |            | stratified with silty sand; moist,<br>very dense.                                                                                                                             |        |              |                        | S-7    | SS                    | 100                                      | 24-35-40                                        | 75      |          |           |         |                 |          |       |      |       |           |                 |      |       | •            |       |
| 37       | 3-58 truck mount | Mud Rotary |                                                                                                                                                                               | SP-SM  |              |                        |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 39       | ш                |            |                                                                                                                                                                               | S      |              |                        |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 41       |                  |            |                                                                                                                                                                               |        |              |                        | S-8    | SS                    | 100                                      | 24-40-50                                        | 90      |          |           |         |                 |          |       |      |       |           |                 |      |       | •            |       |
| 43       |                  |            | (SM) Silty SAND, fine to medium,<br>little non-plastic fines; gray with<br>tan, laminated to stratified in 3-<br>inch lenses; moist, very dense.                              |        |              | 448.4<br>43.0          |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 45       |                  |            |                                                                                                                                                                               | SM     |              |                        | S-9    | SS                    | 100                                      | 35-45-46                                        | 91      | _        |           |         |                 |          |       |      |       |           |                 |      |       | •            |       |
| 47       |                  |            |                                                                                                                                                                               |        |              |                        |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
| 50       |                  |            |                                                                                                                                                                               |        |              |                        |        |                       |                                          |                                                 |         |          |           |         |                 |          |       |      |       |           |                 |      |       |              |       |
|          |                  |            |                                                                                                                                                                               | Iree   | 0            |                        |        |                       |                                          |                                                 |         | _        |           |         |                 |          |       |      |       |           |                 |      |       | RE\          | /:    |
| HAN      | /IME             | :R         | i THE: Automatic, 140lb, 30" c                                                                                                                                                | тор    |              |                        |        |                       |                                          | 11                                              | -       |          | のないの日本のない |         |                 |          | LC    | GG   | ED:   | J.        | Anderson D      | ATE: | Feb   | 06, 2        | 023   |
| Golder L | a Imper          | al / Soil- | Gradation 2 / Golder - 3 Impedial US / ASTM D2487 Auto (most commo                                                                                                            | n ASTM | / 2023-04-13 |                        |        |                       |                                          |                                                 |         |          |           |         |                 |          | CI    | HEC  | KE    | D: J.     | Anderson D      | ATE: | Apr   | 10, 2        | 023   |

Sheet 2 of 5

| PRC<br>PRC<br>LOC            | )JE(<br>)JE(<br>ATI) | CT:<br>CT I<br>ON: | Project 67 Due Diligence<br>NO: 31405932<br>Atallia, WA                                                                                                                                      | e    |                | E<br>IN<br>C           | ND DA<br>ICLINA<br>ONTR | ATE:<br>ATION:<br>ACTO       | F<br>-9<br>R: H                                                                                                                                | ebruary 07,<br>90.0°<br>olt Services                    | 202<br>, Inc | 3        |                                          |                                           |              |       | COC<br>COC<br>HOF | DRD<br>DRD<br>RZ D | INATES: N: 289254.2 ft E: 20457<br>SYS: SP WA South FIPS 4602<br>DATUM: NAD83 VERT DAT | 46.2 ft<br>? Ft<br>JM: NAVD88      | 3       |
|------------------------------|----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------------------------|-------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------|----------|------------------------------------------|-------------------------------------------|--------------|-------|-------------------|--------------------|----------------------------------------------------------------------------------------|------------------------------------|---------|
| _                            |                      | DD                 | MATERIAL PROFI                                                                                                                                                                               | ILE  |                |                        |                         | :                            | SAMP                                                                                                                                           | LES                                                     |              | WA       | TER C                                    | ONTEN                                     | r GRA        | ADATI | ON %              | NT %               | 0 بـ                                                                                   | SPT N Valu                         | e       |
| DEPTH (ft)                   | DRILL RIG            | DRILL METH         | DESCRIPTION                                                                                                                                                                                  | USCS | STRATA<br>PLOT | ELEV.<br>DEPTH<br>(ft) | NUMBER                  | Hammer<br>ASTI<br>140<br>JAL | Automatic<br>W D 1586, B<br>I-b hammer<br>S D L<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | 140lb, 30° drop<br>lows per 6 in<br>30-in drop<br>SMOTB | N-VALUE      |          | lastic &<br>imits (%<br>Vater Co<br>Nonp | Liquid<br>)<br>ntent (%)<br>lastic<br>8 % | 50<br>GRAVEL | SAND  | FINES             | DRGANIC CONTE      | ADDITIONA<br>LAB TESTIN                                                                | PENETRATI<br>RESISTANC<br>BLOWS/FT | ON<br>E |
| - 51                         |                      |                    | (SM) Silty SAND, fine to medium,<br>little non-plastic fines; gray with<br>tan, laminated to stratified in 3-<br>inch lenses; moist, very dense.                                             |      |                |                        | S-10                    | SS                           | 100                                                                                                                                            | 33-50/6"                                                |              | <u> </u> | <u> </u>                                 |                                           | -            |       |                   | 0                  |                                                                                        |                                    |         |
| - 52<br>- 53<br>- 54<br>- 55 |                      |                    | (SM) Silty SAND with gravel, fine<br>to medium, some coarse gravel;<br>gray with light tan,<br>heterogeneous; mosit, very<br>dense, pulverized highly altered<br>cobble.<br>Tcs (Ringold Fm) | SM   |                | <u>438.4</u><br>53.0   | S-11                    | SS                           | 100                                                                                                                                            | 50/6*                                                   |              |          |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| - 56<br>- 57<br>- 58         |                      |                    | (ML) Sandy SILT mostly non-                                                                                                                                                                  |      |                | 433.4                  |                         |                              |                                                                                                                                                |                                                         |              | -        |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| - 59<br>- 60                 |                      |                    | plastic fines, some fine sand;<br>gray; moist, very dense.                                                                                                                                   |      |                | 50.0                   | C 12                    | °C                           | 100                                                                                                                                            | 40 50/5"                                                |              | -        |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| - 61<br>- 62<br>- 63<br>- 64 | B-58 truck mount     | Mud Rotary         |                                                                                                                                                                                              |      |                |                        | 0.12                    |                              |                                                                                                                                                |                                                         |              | _        |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| 65                           |                      |                    |                                                                                                                                                                                              | ML   |                |                        | S-13                    | SS                           | 80                                                                                                                                             | 50/6"                                                   |              | -        |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| 67                           |                      |                    | (ML) Sandy SILT with gravel,<br>mostly non-plastic fines, some<br>fine to coarse sand, few fine<br>subrounded gravel; light tannish<br>gray; moist, very dense.                              | -    |                | <u>423.4</u><br>68.0   |                         |                              |                                                                                                                                                |                                                         |              |          |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| 70<br>71<br>72               |                      |                    |                                                                                                                                                                                              |      |                |                        | S-14                    | SS                           | 100                                                                                                                                            | 50/6"                                                   |              | -        |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| 73 - 74 - 75 -               |                      |                    | Continued on Next Page                                                                                                                                                                       |      |                |                        |                         |                              |                                                                                                                                                |                                                         |              |          |                                          |                                           |              |       |                   |                    |                                                                                        |                                    |         |
| HAM                          | ME                   | RT                 | YPE: Automatic, 140lb, 30" dr                                                                                                                                                                | rop  |                |                        |                         |                              |                                                                                                                                                | 11                                                      | 5            |          | )                                        |                                           |              |       |                   |                    |                                                                                        | RE                                 | V:<br>2 |

| CLIE<br>PRO<br>PRO                    |               | ст:<br>ст 1 | Rockwool<br>Project 67 Due Diligence<br>NO: 31405932                                                                                                                               | •       | RE                   | EC        |           | RD<br>ATE:<br>CLIN/ |                      | -9 <b>-</b> 9                              | <b>OREH</b><br>anuary 19, 2                    | 1C<br>023 | DLE: M                           | W    | ^0-<br>۱<br>۱ |            | VATI<br>DRDI<br>DRD | ON:<br>NATES:<br>SYS: | 447.7 ft (Existin<br>N: 291360.3 ft<br>SP WA South F | ng Grou<br>E: 204 | Sheet 1 of 3<br>und)<br>5046.9 ft<br>502 Ft |
|---------------------------------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-----------|-----------|---------------------|----------------------|--------------------------------------------|------------------------------------------------|-----------|----------------------------------|------|---------------|------------|---------------------|-----------------------|------------------------------------------------------|-------------------|---------------------------------------------|
| LOC                                   | ATI           | ON:         | Atallia, WA                                                                                                                                                                        |         |                      |           | C         | ONTR                | ACTO                 | R: Ho                                      | olt Services,                                  | Inc       |                                  |      | ł             | HOF        | RZ D                | ATUM:                 | NAD83 V                                              | ERT D/            | ATUM: NAVD88                                |
|                                       |               | QO          | MATERIAL PROFIL                                                                                                                                                                    | LE      |                      |           |           |                     | \$                   | SAMP                                       | LES                                            |           | WATER CONTEN                     | T GR | ADATIO        | DN %       | ENT %               | 10<br>IC              | SPT N Value                                          | ER<br>NS          | CONSTRUCTION AND<br>INSTALLATION DETAILS    |
| PTH (ft                               | ILL RIG       | METH.       | DESCRIPTION                                                                                                                                                                        | cs      | ATA                  | ELE       | EV.       | œ                   | Hammer<br>AST<br>140 | Automatic,<br>M D 1586, Bi<br>I-Ib hammer, | 140ib; 30° drop<br>ows per 6 in<br>.30-in drop | ш         | H Plastic & Liquid<br>Limits (%) | VEL  | QN            | ES         | C CONTI             | TESTI                 | PENETRATION<br>RESISTANCE<br>BLOWS/FT                | INDWAT            |                                             |
| DE                                    | DR            | DRILL       | DESCRIPTION                                                                                                                                                                        | NS      | STR                  | DEF<br>(f | PTH<br>t) | NUMBE               | TYPE                 | REC %                                      | BLOWS                                          | N-VALU    | NP Nonplastic                    | GR/  | SA            | FIN        | ORGANI              | ADI                   | 20 40 60 80                                          | GROI              | Pipe Stickup: 2.20<br>ft                    |
| i i i i i i i i i i i i i i i i i i i |               |             | Topsoil; grass.<br>Qd (Dune sand)                                                                                                                                                  |         | ssile, s<br>to ssile | 316 O.    | 0         |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| 1<br>1<br>1<br>1<br>1<br>2            |               |             | (SM) Silty SAND, fine, some non-<br>plastic fines; gray; dry, medium<br>dense, few organic fragments.                                                                              |         |                      | 1.        | 0         |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   | 0.0 - 2.0 ft bgs:<br>cement                 |
| 3                                     |               |             |                                                                                                                                                                                    |         |                      |           |           | S-1                 | SS                   | 87                                         | 22-12-10                                       | 22        | -                                |      |               |            |                     |                       | •                                                    |                   |                                             |
| 5                                     |               |             | (SM) Silty SAND, fine to coarse,<br>non-plastic fines, trace fine                                                                                                                  |         |                      | 44        | 3.2<br>.5 |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| 6                                     |               |             | gravel; black to brown; moist,<br>very dense.<br>Qfs (Touchet beds)                                                                                                                |         |                      |           |           | S-2                 | SS                   | 100                                        | 34-41-50                                       | 91        | -                                |      |               |            |                     |                       | •                                                    |                   |                                             |
| 8                                     |               |             |                                                                                                                                                                                    |         |                      |           |           | S-3                 | SS                   | 100                                        | 46-31-30                                       | 61        | -                                |      |               |            |                     |                       |                                                      |                   |                                             |
| 9                                     |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           | -                                |      |               |            |                     |                       |                                                      |                   |                                             |
| - 11                                  | ount          | 1           |                                                                                                                                                                                    |         |                      | 43        | 5.7       | S-4                 | SS                   | 100                                        | 30-32-36                                       | 68        | -                                |      |               |            |                     |                       |                                                      |                   |                                             |
| 13                                    | B-58 truck mc | Mud Rotar   | (SM) Silty SAND, fine to medium,<br>subrounded to subangular, little<br>non-plastic fines; yellowish brown<br>with dark gray, laminated to<br>stratified, iron oxide staining; dry | SM      |                      | 12        | 2.0       | S-5                 | SS                   | 87                                         | 20-17-23                                       | 40        | -                                |      |               |            |                     |                       | •                                                    |                   |                                             |
| 14                                    |               |             | to moist, dense to very dense.                                                                                                                                                     |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| - 15<br>- 16                          |               |             |                                                                                                                                                                                    |         |                      |           |           | S-6                 | SS                   | 93                                         | 19-21-24                                       | 45        | -                                |      |               |            |                     |                       | •                                                    |                   |                                             |
| - 17                                  |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| - 18                                  |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| - 20                                  |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| 21                                    |               |             |                                                                                                                                                                                    |         |                      |           |           | S-7                 | SS                   | 93                                         | 19-36-31                                       | 67        |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| 22                                    |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| 24                                    |               |             |                                                                                                                                                                                    |         |                      |           |           |                     |                      |                                            |                                                |           |                                  |      |               |            |                     |                       |                                                      |                   |                                             |
| - 25                                  |               |             | Continued on Next Page                                                                                                                                                             | _       | n: 1:1               | 1         |           |                     |                      |                                            | 1                                              | 1         |                                  |      |               |            |                     |                       |                                                      |                   | REV:                                        |
| HAN                                   | 1ME           | R T         | TYPE: Automatic, 140lb, 30" d                                                                                                                                                      | lrop    |                      |           |           |                     |                      |                                            | 11                                             | 5         |                                  | 172  |               |            | -                   | Comercia              |                                                      |                   | 2                                           |
| Golder Lo                             | a Imperi      | al / Soil-I | Gradation 2 / Golder - 3 Imperial US / ASTM D2657 Auto (most common                                                                                                                | n ASTM) | / 2023-04-           | 13        |           |                     |                      |                                            |                                                |           |                                  | C    | HEC           | ED:<br>KED | E.<br>): J. /       | Anderson              | 1                                                    |                   | DATE: Jan 19, 2023<br>DATE: Feb 17, 2023    |

|            |           |             |                                                                                                                    |       | RE        | ECC           | R      | O O       | B                           | OREH                       | Ю       | )L      | E                |                    | M                       | W            | '-C  | )1     |              |                       |                                       |         | Sheet 2 of 3                                       |
|------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------|-------|-----------|---------------|--------|-----------|-----------------------------|----------------------------|---------|---------|------------------|--------------------|-------------------------|--------------|------|--------|--------------|-----------------------|---------------------------------------|---------|----------------------------------------------------|
| CLIE       | NT:       |             | Rockwool                                                                                                           |       |           | 1             | DATE:  |           | Ja                          | anuary 19, 2               | 023     |         |                  |                    |                         |              |      | ELE    | EVAT         |                       | 447.7 ft (Existin                     | ng Grou | ind)                                               |
| PRO        | JEC       | CT:         | Project 67 Due Diligence                                                                                           | 9     |           |               | NCLIN  | ATION     | -0                          | 0.0°                       |         |         |                  |                    |                         |              |      |        |              | DINATES:              | N: 291360.3 ft<br>SP WA South F       | E: 204  | 5046.9 ft<br>602 Ft                                |
| LOC        | ATIO      | ON:         | Atallia, WA                                                                                                        |       |           | - (           | CONTI  | RACTO     | R: H                        | olt Services,              | Inc     |         |                  |                    |                         |              |      | НО     | RZ           | DATUM:                | NAD83 VE                              | ERT DA  | TUM: NAVD88                                        |
|            |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              | 1                     |                                       |         |                                                    |
| t)         | 0         | OP I        | MATERIAL PROFIL                                                                                                    | LE    |           |               |        | Hamme     | SAMP                        | LES                        |         | WA      | TEF              | R COI              | NTEN                    | T GR         | ADA  | TION 9 | TENT %       | NG                    | SPT N Value                           | TER     | CONSTRUCTION AND<br>INSTALLATION DETAILS           |
| TH (f      | LL RIG    | METH        |                                                                                                                    | s     | ATA       | ELEV          |        | AST<br>14 | M D 1586, Bi<br>D-Ib hammer | ows per 6 in<br>30-in drop |         | н       | Plasti<br>Limite | ic & Lic<br>1 (%)  | quid                    | μ.           |      |        | CONT         | TION                  | PENETRATION<br>RESISTANCE<br>BLOWS/FT | NDWA    |                                                    |
| DEP        | DRI       | DRILL       | DESCRIPTION                                                                                                        | nsc   | STR/      | DEPTI<br>(ft) | NUMBER | TYPE      | REC %                       | BLOWS                      | N-VALUE | O NP SC | Wate<br>N        | r Conte<br>Ionplas | ent (%)<br>stic<br>901- | -150<br>GRAV | NV S | FINE   | ORGANIC      | ADDI<br>LAB 1         | 20 40 60 80                           | GROU    | Pipe Stickup: 2.20<br>ft                           |
| - 26       |           |             | (SM) Silty SAND, fine to medium,<br>subrounded to subangular, little<br>non-plastic fines; yellowish brown         |       |           |               | S-8    | SS        | 100                         | 23-29-40                   | 69      |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 27       |           |             | stratified, iron oxide staining; dry<br>to moist, dense to very dense.                                             |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 28       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         | 0 - 55 ft bgs:<br>plain pipe<br>2.0 - 54.0 ft bgs: |
| - 29       |           |             |                                                                                                                    | SM    |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         | bentonite chips                                    |
| - 30       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 31       |           |             |                                                                                                                    |       |           |               | S-9    | SS        | 93                          | 22-35-50/5"                |         |         |                  |                    |                         |              |      |        |              |                       | <b></b>                               |         |                                                    |
| - 32       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 33       |           | -           | (ML) Sandy SILT, mostly non-                                                                                       |       |           | 414.7         | -      |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 34       |           |             | plastic fines, some fine sand;<br>golden brown to tan, laminated;<br>dry to moist, very dense.<br>Tes (Ringold Em) |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 35       |           |             | - 35.0 ft: tan lenses                                                                                              |       |           |               | S-10   | SS        | 78                          | 33-50/5"                   |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 36       |           |             |                                                                                                                    |       |           |               |        | 00        |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| 37         | ck mount  | Rotary      |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 38       | B-58 tru  | Mud         |                                                                                                                    | ML    |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 39       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 40       |           |             |                                                                                                                    |       |           |               | S-11   | SS        | 60                          | 50/6"                      |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 41       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 42       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 43       |           |             | (SM) Silty SAND, fine, non-plastic<br>fines; golden brown to gray,<br>laminated: dry very dense                    |       |           | 404.          |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 44       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 45       |           |             |                                                                                                                    |       |           |               | S-12   | SS        | 100                         | 37-50/6"                   |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 46       |           |             |                                                                                                                    | SM    |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 47       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 49       |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
| - 50 -     |           |             |                                                                                                                    |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         |                                                    |
|            |           |             | Continued on Next Page                                                                                             |       |           |               |        |           |                             |                            |         |         |                  |                    |                         |              |      |        |              |                       |                                       |         | REV:                                               |
| ΠAΝ        | IVIE      | R I         | TPE: Automatic, 140lb, 30" d                                                                                       | пор   |           |               |        |           |                             | 11                         |         |         |                  |                    |                         |              | 00   | 000    | -            | Carrie                | _                                     |         |                                                    |
| Bolder Log | a Imperia | al / Soil-G | Stadation 2 / Golder - 3 Imperial US / ASTM D2487 Auto (most common                                                | ASTMI | /2023-04- | 13            |        |           |                             |                            |         | _       |                  |                    |                         | C            | HE   | CKE    | . E<br>D: J. | . Sampsol<br>Anderson | ו                                     |         | DATE: Jan 19, 2023<br>DATE: Feb 17, 2023           |

| (ft)                                 | SIG            | тнор       | MATERIAL PROF                                                                                                                                                  | ILE  |                | 1                      |        | Hammer | SAMP<br>Automatic,<br>M D 1586, Bi | LES<br>1401b, 30° drop<br>ows per 6 in |         | WATER CONTENT                                                            | GRAD   |      | NTENT %             | INAL               | SP |                            |                  | VATER              | CONSTR<br>INSTALLA                                                              | UCTION A                                                  |
|--------------------------------------|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------------------------|--------|--------|------------------------------------|----------------------------------------|---------|--------------------------------------------------------------------------|--------|------|---------------------|--------------------|----|----------------------------|------------------|--------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|
| DEPTH                                | DRILLF         | DRILL ME   | DESCRIPTION                                                                                                                                                    | USCS | STRATA<br>PLOT | ELEV.<br>DEPTH<br>(ft) | NUMBER | IXPE   | Lib hammer<br>KEC %                | 30-in drop<br>SMOTB                    | N-VALUE | H Plastic & Liquid<br>Limits (%)<br>O Water Content (%)<br>NP Nonplastic | GRAVEL | SAND | PINES<br>ORGANIC CO | ADDITIC<br>LAB TES | 20 | RESIST/<br>BLOWS/<br>40 60 | ANCE<br>FT<br>80 | GROUNDV<br>OBSERVA | Pip<br>ft                                                                       | pe Stickup                                                |
| 51                                   |                |            | (SM) Silty SAND, fine, non-plastic<br>fines; golden brown to gray,<br>laminated; dry, very dense.                                                              | SM   |                |                        | S-13   | SS     | 86                                 | 39-45-50/5"                            |         | -                                                                        |        |      |                     |                    |    |                            |                  |                    |                                                                                 |                                                           |
| 53<br>54<br>55<br>56<br>57           | unt            |            | (ML) Sandy SILT, mostly low<br>plasticity fines, some fine sand;<br>brown and brown to gray,<br>stratified; moist to dry, hard.<br>- 55.0 ft: 3-inch clay lens | ML   |                | <u>394.7</u><br>53.0   | S-14   | SS     | 80                                 | 35-45-50                               | 95      | -                                                                        |        |      |                     |                    |    |                            | •                |                    |                                                                                 |                                                           |
| 58<br>59<br>60<br>61                 | B-58 truck mor | Mud Rotary | (SM) Silty SAND, fine to coarse,<br>subrounded to subangular, some<br>non-plastic fines; golden brown;<br>dry to moist, very dense.                            | SM   |                | 389.7                  | S-15   | SS     | 87                                 | 24-31-33                               | 64      | -                                                                        |        |      |                     |                    |    |                            |                  | 10Feb23<br>년       | 5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5 | 4.0 - 65.9<br>gs:<br>and<br>5.00 - 65<br>gs:<br>creen Int |
| - 63<br>- 64<br>- 65<br>- 66         |                |            | End of hole at 65.90 ft.<br>No groundwater observed at time                                                                                                    | of   |                | 381.8                  | S-16   | SS     | 100                                | 35-50/5"                               |         | -                                                                        |        |      |                     |                    |    |                            |                  |                    |                                                                                 |                                                           |
| - 67<br>- 68<br>- 69<br>- 70<br>- 71 |                |            | unning.                                                                                                                                                        |      |                |                        |        |        |                                    |                                        |         |                                                                          |        |      |                     |                    |    |                            |                  |                    |                                                                                 | А.                                                        |
| - 72<br>- 73<br>- 74                 |                |            |                                                                                                                                                                |      |                |                        |        |        |                                    |                                        |         |                                                                          |        |      |                     |                    |    |                            |                  |                    |                                                                                 |                                                           |

| CLIE<br>PRC<br>PRC<br>LOC  | INT<br>JE<br>JE<br>ATI | CT:<br>CT I   | Rockwool<br>Project 67 Due Diligence<br>NO: 31405932<br>Atallia, WA                                                                | 9    | RE                         |               | RD<br>ATE:<br>ICLIN/<br>ONTR |                        | - B<br>Ja<br>-91<br>R: Ho                  | OREF<br>nuary 18, 2<br>0.0°<br>It Services, | 1C<br>023<br>Inc | )L      | _E: M\                            | N.       | -0         | 9<br>ELE<br>COC<br>COC | ORC<br>DRC<br>DRC<br>RZ C | FION:<br>DINATES:<br>D SYS:<br>DATUM: | 435.7 ft (Existir<br>N: 289365.3 ft<br>SP WA South F<br>NAD83 VI | ng Grou<br>E: 204<br>FIPS 46<br>ERT DA | ınd)<br>3860.1 ft<br>302 Ft<br>ATUM: NAV | /D88                                             |
|----------------------------|------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|---------------|------------------------------|------------------------|--------------------------------------------|---------------------------------------------|------------------|---------|-----------------------------------|----------|------------|------------------------|---------------------------|---------------------------------------|------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------|
|                            |                        | 0             | MATERIAL PROFIL                                                                                                                    | LE   |                            |               |                              | 5                      | SAMPL                                      | .ES                                         |                  | w       | ATER CONTENT                      | GRA      | DATI       | ON %                   | % LI                      | . (D                                  | SPT N Value                                                      | <b>F</b> (0                            | CONSTR                                   | UCTION AND                                       |
| TH (ft)                    | L RIG                  | AETHO         |                                                                                                                                    | 0    | ۲.A                        | ELEV.         |                              | Hammer<br>ASTN<br>140- | Automatic,<br>A D 1586, Blo<br>-Ib hammer, | 40lb, 30° drop<br>ws per 6 in<br>30-in drop |                  | н       | Plastic & Liquid<br>Limits (%)    | Ш        | 0          | s                      | CONTEN                    | FIONAL                                | PENETRATION RESISTANCE REOVERENT                                 | DWATEF                                 | INSTALLAT                                | TION DETAILS                                     |
| DEPT                       | DRIL                   | DRILLA        | DESCRIPTION                                                                                                                        | USC  | STRA1<br>PLO1              | DEPTH<br>(ft) | NUMBER                       | TYPE                   | REC %                                      | BLOWS                                       | N-VALUE          | O<br>NF | Water Content (%)<br>P Nonplastic | GRAVI    | SAN        | FINE                   | ORGANIC (                 | ADDI1<br>LAB TI                       | 20 40 60 80                                                      | GROUN                                  | Pir<br>ft                                | pe Stickup: 2.00                                 |
| maha                       |                        |               | Topsoil; grass.<br>QI (Loess)                                                                                                      |      | <u>ماند ماند</u><br>ماند م | 0.0           |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 1<br>1<br>1<br>1<br>1<br>1 |                        |               | (SM) Silty SAND, fine,<br>subangular, little non-plastic<br>fines; brown; dry, medium dense.                                       |      |                            | 1.0           |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        | 0,<br>ce                                 | .0 - 2.0 ft bgs:<br>ement                        |
| 1 3<br>1 4                 |                        |               |                                                                                                                                    |      |                            |               | S-1                          | SS                     | 73                                         | 6-6-7                                       | 13               |         |                                   |          |            |                        |                           |                                       | •                                                                |                                        |                                          |                                                  |
| undura e                   |                        |               | (SM) Silty SAND, fine to coarse,                                                                                                   |      |                            | 431.2<br>4.5  | -                            |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 5 6                        |                        |               | non-plastic fines, light brown to<br>dark gray, laminated to stratified;<br>dry, medium dense to very dense.<br>Qfs (Touchet beds) |      |                            |               | S-2                          | SS                     | 100                                        | 16-16-9                                     | 25               | 0       | D                                 | 0        | 70         | 30                     | _                         | 23975:<br>Sieve<br>Analysis           | •                                                                |                                        |                                          |                                                  |
| luulu                      |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  | -       |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
|                            |                        |               |                                                                                                                                    |      |                            |               | S-3                          | SS                     | 100                                        | 14-20-16                                    | 36               | 0       | o                                 | 0        | 71         | 29                     |                           | 23976:<br>Sieve with                  | •                                                                |                                        |                                          |                                                  |
| 9<br>1                     |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  | 1       |                                   |          |            |                        | 1                         | Hydrometer                            |                                                                  |                                        |                                          |                                                  |
| 10                         |                        |               |                                                                                                                                    |      |                            |               | 6.4                          |                        | 07                                         | 16 25 29                                    | 52               |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 11                         | Ŧ                      |               |                                                                                                                                    |      |                            |               | 5-4                          |                        | 07                                         | 10-23-20                                    | 55               |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 12                         | uck mount              | Rotary        |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 13                         | B-58 tr                | Mud           |                                                                                                                                    | SM   |                            |               | S-5                          | SS                     | 87                                         | 14-27-24                                    | 51               |         |                                   |          |            |                        |                           |                                       | •                                                                |                                        |                                          |                                                  |
| 14                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 15                         |                        |               |                                                                                                                                    |      |                            |               |                              | master                 |                                            |                                             |                  | -       |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 16                         |                        |               |                                                                                                                                    |      |                            |               | S-6                          | SS                     | 87                                         | 11-14-7                                     | 21               |         |                                   |          |            |                        |                           |                                       | •                                                                |                                        |                                          |                                                  |
| 17                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        | 0                                        | - 35 ft bgs:                                     |
| 18                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        | pl<br>2.<br>b                            | lain pipe<br>.0 - 34.0 ft bgs:<br>entonite chips |
| 19                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 20                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  | -       |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 21                         |                        |               |                                                                                                                                    |      |                            |               | S-7                          | SS                     | 87                                         | 16-31-32                                    | 63               |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 22                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 23                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| 24                         |                        |               |                                                                                                                                    |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| - 25                       |                        |               | Continued on Next Page                                                                                                             |      |                            |               |                              |                        |                                            |                                             |                  |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          |                                                  |
| HAN                        | 1ME                    | ER 1          | YPE: Automatic, 140lb, 30" d                                                                                                       | lrop |                            |               |                              |                        |                                            | 11                                          | 5                |         |                                   |          |            |                        |                           |                                       |                                                                  |                                        |                                          | 2                                                |
| Golder Lo                  | a Imper                | tial / Soil-t | Gradation 2 / Golder - 3 Imperial US / ASTM D2457 Auto Invest common                                                               | ASTM | /2023-04-13                |               |                              |                        |                                            |                                             | 1                |         | Ĺ                                 | LC<br>Cł | DGG<br>HEC | ED:<br>KED             | E.<br>D: J.               | . Sampso<br>Anderso                   | n<br>1                                                           |                                        | DATE: Jan<br>DATE: Apr                   | 18, 2023<br>10, 2023                             |

|           |          |             |                                                                          |       | RE                      | CO            | RD    | O F                 | = B                                          | ORE                                           | НС     | DI         | LE: MV                                | V-09      |          |                  |                                     | 0                  | Sheet 2 of 2             |
|-----------|----------|-------------|--------------------------------------------------------------------------|-------|-------------------------|---------------|-------|---------------------|----------------------------------------------|-----------------------------------------------|--------|------------|---------------------------------------|-----------|----------|------------------|-------------------------------------|--------------------|--------------------------|
| CLI       | INT:     | CT:         | Rockwool<br>Project 67 Due Diligence                                     | 9     |                         | D             | ATE:  |                     | Ja                                           | anuary 18, 2                                  | 2023   | 3          |                                       | EL        | ORE      | ION:<br>DINATES: | 435.7 ft (Existii<br>N: 289365.3 ft | ng Grou<br>E: 204: | nd)<br>3860.1 ft         |
| PRO       | JEC      | CT N        | IO: 31405932                                                             |       |                         | IN            |       | ATION               | : -9                                         | 0.0°                                          |        |            |                                       | CC        | ORE      | SYS:             | SP WA South I                       | FIPS 46            | 02 Ft                    |
| LOC       | ATI      | SN:         | Atallia, WA                                                              |       |                         | С             | ONTF  | RACTO               | R: Ho                                        | olt Services                                  | , Inc  | <b>D</b> . |                                       | НС        | )rz [    | DATUM:           | NAD83 V                             | ERT DA             | TUM: NAVD88              |
|           |          | Q           | MATERIAL PROFIL                                                          | LE    |                         |               |       |                     | SAMP                                         | LES                                           |        | V          | WATER CONTENT                         | GRADATION | % IN     | U L              | SPT N Value                         | RI SI              | CONSTRUCTION AND         |
| (ft) (ft) | L RIG    | NETHO       |                                                                          |       | ۲.                      | ELEV.         |       | Hammer<br>AST<br>14 | r Automatic,<br>M D 1586, Bi<br>D-Ib hammer, | 1401b, 30° drop<br>ows per 6 in<br>30-in drop |        | F          | → Plastic & Liquid<br>Limits (%)      |           | CONTE    | FIONA            | PENETRATION RESISTANCE PLOWERET     | DWATE              | INSTALLATION DE TAILS    |
| DEPT      | DRIL     | DRILL N     | DESCRIPTION                                                              | USC   | STRA                    | DEPTH<br>(ft) | UMBER | TYPE                | REC %                                        | SMOTE                                         | -VALUE | C          | Water Content (%)<br>NP Nonplastic    | SAN       | SGANIC ( | ADDI1<br>LAB TI  | BLOWSIPT                            | GROUN              | Pipe Stickup: 2.00       |
|           | _        | -           | (SM) Silty SAND, fine to coarse,                                         |       |                         |               | z     |                     | -                                            |                                               | z      | ę          | -25<br>-50<br>-75<br>-10(1)<br>-12(1) |           | - Ho     |                  | 20 40 60 80                         |                    | ft                       |
| 26        |          |             | non-plastic fines; light brown to<br>dark gray, laminated to stratified; |       |                         |               | S-8   | SS                  | 100                                          | 27-37-43                                      | 80     |            |                                       |           |          |                  | <b></b>                             |                    |                          |
| 27        |          |             | dry, medium dense to very dense.<br>Qfs (Touchet beds)                   |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
|           |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 28        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| - 29      |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 30        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| uluu      |          |             |                                                                          |       |                         |               | S-9   | SS                  | 100                                          | 29-46-50                                      | 96     |            |                                       |           |          |                  |                                     |                    |                          |
| 31        |          |             |                                                                          |       |                         |               |       |                     | -                                            |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 32        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 33        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 34        |          |             |                                                                          | N     |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
|           | t        |             |                                                                          | S     |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 35        | ick mou  | Rotary      |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 36        | B-58 tn  | Mud         |                                                                          |       |                         |               | S-10  | SS                  | 100                                          | 30-33-45                                      | 78     | 3          |                                       |           |          |                  | •                                   |                    |                          |
| 37        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| n i lu i  |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 38        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 39        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 40        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               | +      | -          |                                       |           |          |                  |                                     |                    | 34.0 - 46.0 ft           |
| 41        |          |             |                                                                          |       |                         |               | S-11  | SS                  | 93                                           | 43-34-47                                      | 81     | 1          |                                       |           |          |                  | •                                   |                    | sand<br>35.00 - 45.00 ft |
|           |          |             |                                                                          |       |                         |               |       |                     | +                                            |                                               | +      | -          |                                       |           |          |                  |                                     |                    | bgs:<br>Screen Interval  |
| 42        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 43        |          | -           | (ML) Sandy SILT, mostly low                                              | +     |                         | 392.7<br>43.0 | -     |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 44        |          |             | trace coarse rounded gravel;<br>white to tan: moist, hard, trace         |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
|           |          |             | carbonized organics.<br>Tcs (Ringold Fm)                                 | ML    |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 45        |          |             |                                                                          |       |                         | 200 7         | S-12  | SS                  | 100                                          | 32-50/6"                                      |        |            |                                       |           |          |                  |                                     |                    |                          |
| 46        |          |             | End of hole at 46.00 ft.<br>No groundwater observed at time o            | f     | 111                     | 389.7         |       |                     | -                                            |                                               |        |            |                                       |           | -        |                  |                                     |                    | +                        |
| 47        |          | ľ           | drilling; monitoring well developed<br>upon completion of installation.  |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 48        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| n luu     |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| 49        |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        |            |                                       |           |          |                  |                                     |                    |                          |
| - 50      |          |             |                                                                          |       | 1                       |               |       |                     |                                              |                                               | _      |            |                                       |           |          |                  |                                     | <u></u>            | REV <sup>.</sup>         |
| HAI       | ИME      | RT          | YPE: Automatic, 140lb, 30" c                                             | irop  | D                       |               |       |                     |                                              | 11                                            | 5      |            |                                       |           |          |                  |                                     |                    | 2                        |
|           |          |             |                                                                          |       |                         |               |       |                     |                                              |                                               |        | 1          | ľ                                     | LOGGEI    | D: E     | . Sampso         | n                                   |                    | DATE: Jan 18, 2023       |
| Golder L  | a Imperi | al / Soil-G | radation 2 / Golder - 3 Imperial US / ASTM D2487 Auto (most commo        | DASTM | <u>4) / 2023-04-1</u> ; | 3             |       |                     |                                              |                                               |        |            |                                       | CHECKE    | ED: J    | Anderso          | n                                   |                    | DATE: Apr 10, 2023       |

|                                         |          |           | Reskuest                                                                                                      |       | R                                           | E       | CO                  |       | OF          | B                                     | ORE                            |        | C  | _E: M\                            | N-       | -10   | )    |        |                      | 121 5    | 9 ft (Evicti                          | ng Grou | und)   | Sheet 1                       | of 3       |
|-----------------------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------|---------|---------------------|-------|-------------|---------------------------------------|--------------------------------|--------|----|-----------------------------------|----------|-------|------|--------|----------------------|----------|---------------------------------------|---------|--------|-------------------------------|------------|
| PRO                                     |          | CT:       | Project 67 Due Diligence                                                                                      | 9     | COORDINATES: N: 288954.3 ft E: 2043845.5 ft |         |                     |       |             |                                       |                                |        |    |                                   |          |       | ft   |        |                      |          |                                       |         |        |                               |            |
| PRO                                     | JE       |           | NO: 31405932                                                                                                  |       |                                             |         | IN                  |       | ATION:      | -9<br>                                | 0.0°                           | Inc    |    |                                   |          | C     |      | RD     | SYS:                 | SP V     | VA South                              | FIPS 46 | 02 Ft  |                               |            |
|                                         | AII      | UN.       | Atalia, WA                                                                                                    |       |                                             |         |                     | UNTR  | ACTO        | <. Πι                                 | IL Services,                   | , inc  |    |                                   |          |       | IUK  | 20     | ATOW.                | NAD      | 65 V                                  | ERIDA   |        | AV DOO                        |            |
|                                         |          | OD        | MATERIAL PROFIL                                                                                               | E     |                                             |         | 2                   |       | \$          | SAMPL                                 | .ES                            |        | W  | ATER CONTENT                      | GRA      | DATIO | )N % | ENT %  | AG VC                | SP       | T N Value                             | NS R    | CONS   | STRUCTION AN                  | D          |
| TH (ft                                  | LL RIG   | METH      |                                                                                                               | S     | ATA                                         | T       | ELEV.               |       | AST/<br>140 | Hamme<br>A D 1586, Blo<br>-Ib hammer, | r<br>wws.per6.in<br>30-in drop |        | н  | Plastic & Liquid<br>Limits (%)    | ÆL       | g     | S    | CONTE  | ITION/               | <b>A</b> | PENETRATION<br>RESISTANCE<br>BLOWS/FT | NDWAT   |        |                               | 0.000      |
| DEF                                     | DRI      | DRILL     | DESCRIPTION                                                                                                   | nsc   | STR/                                        | PLC     | DEPTH<br>(ft)       | UMBEF | TYPE        | REC %                                 | SMOTE                          | -VALUE | NF | Water Content (%)<br>P Nonplastic | GRA      | SAN   | FIN  | RGANIC | ADD<br>LAB           |          |                                       | GROU    |        | Pipe Stickup:                 | 1.30       |
|                                         | -        | _         | Topsoil; sandy, tannish gray.                                                                                 |       | sale,                                       | 316     | 0.0                 | z     |             | -                                     |                                | z      | 9  | -25<br>-75<br>-121                |          |       |      | 0      |                      | 20       | 40 60 80                              |         |        | ft                            |            |
| 1                                       |          |           | (ML) SILT with sand, mostly non-<br>plastic fines, little fine sand; tan;<br>dry, medium dense to very dense. |       | solda.                                      | <u></u> | <u>423.8</u><br>1.0 |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        | 0.0 - 2.0 ft bg<br>cement     | 5:         |
| aturilaritarilaritarilaritarilaritarila |          |           | - 5.0 ft: trace wooden fragments                                                                              | ML    |                                             |         |                     | S-1   | SS          | 60                                    | 8-10-10                        | 20     | _  |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 9                                       |          |           | - 10.0 ft: laminated                                                                                          |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 11                                      |          |           |                                                                                                               |       |                                             |         |                     | S-2   | SS          | 87                                    | 8-21-33                        | 54     | 0  |                                   | 0        | 26    | 74   |        | 23977:<br>Sieve with |          | •                                     |         |        |                               |            |
| 12                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        | Hydrometer           |          |                                       |         |        |                               |            |
| indiana de                              | CME 8    | HSA       |                                                                                                               |       |                                             |         | 411.8               |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| L 13                                    |          |           | (SM) Silty SAND, fine, some non-<br>plastic fines; tannish gray, locally                                      |       |                                             |         | 13.0                |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 14                                      |          |           | laminated, dry, very dense.                                                                                   |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 15                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        | -  |                                   | $\vdash$ |       |      |        |                      |          |                                       |         |        |                               |            |
| 16                                      |          |           |                                                                                                               |       |                                             |         |                     | S-3   | SS          | 93                                    | 8-25-26                        | 51     | 0  | )                                 | 0        | 53    | 47   |        | 23978:<br>Sieve      |          | •                                     |         |        |                               |            |
| 17                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   | -        |       |      |        | Analysis             |          |                                       |         |        |                               |            |
| undun 1                                 |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 18                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 19                                      |          |           |                                                                                                               | SM    |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 20                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                | _      |    |                                   |          |       |      |        |                      |          |                                       |         |        | 0 - 40 ft bgs:                |            |
| undarian de                             |          |           |                                                                                                               |       |                                             |         |                     | S-4   | SS          | 87                                    | 16-32-41                       | 73     |    |                                   |          |       |      |        |                      |          |                                       |         |        | plain pipe<br>2.0 - 39.0 ft b | igs:<br>ps |
| 21                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                | -      | -  |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 22                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| - 23                                    |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| 24                                      |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| mhu                                     |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                |        |    |                                   |          |       |      |        |                      |          |                                       |         |        |                               |            |
| - 25                                    |          |           | Continued on Next Page                                                                                        |       | 1130                                        | 1       |                     |       |             |                                       |                                |        |    |                                   | 4        |       |      |        |                      | -U       | a la ha                               |         |        | REV:                          |            |
| HAN                                     | ИМЕ      | ER T      | YPE:                                                                                                          |       |                                             |         |                     |       |             |                                       |                                | 6      |    |                                   |          |       |      |        |                      |          |                                       |         |        | 2                             |            |
|                                         |          |           |                                                                                                               |       |                                             |         |                     |       |             |                                       |                                | 1      |    |                                   | LC       | GGE   | ED:  | J. /   | Anderson             |          |                                       |         | DATE:  | Jan 30, 2023                  |            |
| Golder L                                | a Imperi | al/Soil-C | 3radation 2 / Golder - 3 Imperial US / ASTM D2487 Auto (most common                                           | ASTM) | / 2023-1                                    | 04-13   |                     |       |             |                                       |                                |        |    |                                   | CF       | ECP   | ED   | : J.,  | Andersor             |          |                                       |         | DATE:/ | Apr 10, 2023                  |            |

| U     MATERIAL PROFILE     SAMPLES     WATER CONTENT     GRADATION %     %     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U     U <thu< th="" th<=""><th>SPT N Value PENETRATION<br/>RESISTANCE<br/>BLOWS/FT BUT N Value CONSTRUCTION AND<br/>INSTALLATION DETAILS   PENETRATION<br/>BLOWS/FT PENETRATION<br/>BLOWS/FT PENETRATION<br/>DUBY<br/>DUBY<br/>DUBY<br/>DUBY<br/>DUBY<br/>DUBY<br/>DUBY<br/>DUBY</th></thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPT N Value PENETRATION<br>RESISTANCE<br>BLOWS/FT BUT N Value CONSTRUCTION AND<br>INSTALLATION DETAILS   PENETRATION<br>BLOWS/FT PENETRATION<br>BLOWS/FT PENETRATION<br>DUBY<br>DUBY<br>DUBY<br>DUBY<br>DUBY<br>DUBY<br>DUBY<br>DUBY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U   Li   DESCRIPTION   SO   ELEV.   ELEV.   ELEV.   H   Plastic & Liquid<br>Links (%), Water Content (%), NP   H   Plastic & Liquid<br>Links (%), NP   NP <th< td=""><td>PENETRATION<br/>RESISTANCE<br/>20 40 60 80<br/>20 40 60 80<br/>Ft</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PENETRATION<br>RESISTANCE<br>20 40 60 80<br>20 40 60 80<br>Ft                                                                                                                                                                        |
| B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 로 3     20 40 00 00     8     Pipe Stickup: 1.30       tt     ft     ft                                                                                                                                                              |
| 28   S-5   SS   100   26-50/6*     28   S-6   SS   100   26-50/6*     30   S-6   SS   100   26-50/6*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |
| - 27<br>- 28<br>- 29<br>- 30<br>- 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |
| - 28<br>- 29<br>- 30<br>- 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |
| - 29<br>- 30<br>- 31<br>- 31<br>- 29<br>- 30<br>- 31<br>- 31 |                                                                                                                                                                                                                                      |
| 30 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |
| 31 S-6 SS 100 26-50/5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                    |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |
| 33 (SP-SM) Poorly graded SAND 1 391.8 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |
| Vith silt, fine, few non-plastic     555       fines; light gray; dry, very dense.     54       Ofs (Tourbet beds)     555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |
| 36 S-7 SS 100 27-29-50/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |
| 38 9<br>38 9<br>38 9<br>38 9<br>38 9<br>38 9<br>38 9<br>38 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |
| (ML) Sandy SL1, mostly non-<br>plastic fines, some fine sand,<br>trace coarse rounded gravel; tan,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |
| Tcs (Ringold Fm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |
| Image: state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |
| 381.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |
| (SP-SM) Poorly graded SAND 43.0<br>with silt and gravel, fine to<br>medium, some fine to coarse 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |
| ** rounded gravel, few non-plastic :::1   fines; brown, slight iron oxide :::1   staining; moist, very dense. :::1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |
| 45 Tcg (Ringold Fm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bgs:                                                                                                                                                                                                                                 |
| 47<br>48 75100 Mell graded SAND with 75.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
| - 49 gravel, fine to coarse,<br>gravel, fine to coarse,<br>grading; wet, very dense.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |
| 50 Continued on Next Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REV:<br>2                                                                                                                                                                                                                            |
| LOGGED: J. An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |

| CLIENT: Rockwool  |                  |                  |                                                                                                                  |         |              |               | RD<br>ATE:    | O P           | F B                                 | OREF                                | <b>IC</b> | )L  | E                | :               | MW-10 Sheet 3 of 3   ELEVATION: 424.8 ft (Existing Ground)   COORDINATES: N: 288954 3 ft E: 2043845 5 ft |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
|-------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------|---------|--------------|---------------|---------------|---------------|-------------------------------------|-------------------------------------|-----------|-----|------------------|-----------------|----------------------------------------------------------------------------------------------------------|------|-------|-------|--------------------|-------------------------|-------------------|-------------------|--------------------------|---------------------|-----------------------------|-----------------------------|-------------------|
| PRO<br>PRO<br>LOO | )JE<br>)JE<br>AT | CT:<br>CT<br>ION | Project 67 Due Diligence<br>NO: 31405932<br>: Atallia, WA                                                        | e       |              | IN<br>C       | ICLIN<br>ONTF | ATION<br>ACTO | : -9<br>R: H                        | 90.0°<br>olt Services,              | Inc.      | •3  |                  |                 |                                                                                                          |      |       | COC   | ORD<br>ORD<br>RZ D | NATES:<br>SYS:<br>ATUM: | N: 2<br>SP<br>NAI | 2889<br>WA<br>D83 | 54.<br>Soi               | .3 π<br>uth F<br>VI | E: 204<br>FIPS 46<br>ERT DA | 3845.5 f<br>02 Ft<br>TUM: N | AVD88             |
|                   |                  | Q                | MATERIAL PROFI                                                                                                   | LE      |              |               |               |               | SAMP                                | LES                                 |           | WA  | ATER             |                 | NTEN                                                                                                     | T GR | ADATI | ION % | NT %               | ی ر                     | S                 | PTN               | Va                       | lue                 | K S                         | CONS                        |                   |
| TH (ft)           | LL RIG           | METHO            |                                                                                                                  | s       | TTA<br>T     | ELEV.         |               | AST<br>14     | Hamm<br>M D 1586, Bi<br>0-Ib hammer | er<br>Iows per 6 in<br>; 30-in drop |           | н   | Plasti<br>Limits | c&Liq<br>(%)    | quid                                                                                                     | Æ    | D     | S     | CONTE              | TIONA<br>TESTIN         |                   | PEN<br>RES<br>BLC | NETRA<br>SISTAN<br>DWS/F | ATION<br>NCE        | NDWATE                      | INOTAL                      |                   |
| DEF               | DRI              | DRILL            | DESCRIPTION                                                                                                      | nsc     | STR/<br>PLC  | DEPTH<br>(ft) | NUMBER        | TYPE          | REC %                               | BLOWS                               | N-VALUE   | NP  | Water<br>N       | Conte<br>onplas | ant (%)<br>atic<br>S %                                                                                   | GRA  | SAN   | FINE  | RGANIC             | ADD<br>LAB 7            | 2                 | 10 40             | 60                       | 80                  | GROU                        |                             | Pipe Stickup: 1.3 |
| 51                | CME 85           | HSA              | (SW) Well graded SAND with<br>gravel, fine to coarse,<br>subrounded; gray, downward<br>grading; wet, very dense. | SW      |              | 373.3         | S-10          | SS            | 60                                  | 7-19-33                             | 52        | 9 ( | 7 4              | -               | <del></del>                                                                                              |      |       |       |                    |                         |                   | <u>r</u> r        |                          | Ť                   |                             |                             |                   |
| 52                |                  |                  | End of hole at 51.50 ft.<br>Monitoring well developed upon<br>completion of installation.                        |         | -            |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 53                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 54                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 56                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 57                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 58                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 59                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 60                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 61                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 62                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 63                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 64                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 65                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 66                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 68                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| - 69              |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 70                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| - 71              |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 72                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 73                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| 74                |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| - 75              |                  |                  | 1                                                                                                                |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             |                   |
| HAN               | ИME              | ER <sup>-</sup>  | TYPE:                                                                                                            |         |              |               |               |               |                                     | 11                                  | 5         |     |                  |                 |                                                                                                          |      |       |       |                    |                         |                   |                   |                          |                     |                             |                             | REV:<br>2         |
|                   |                  |                  |                                                                                                                  |         |              |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          | L    | DGG   | ED:   | J. /               | Andersor                | 1                 |                   |                          |                     |                             | DATE: J                     | an 30, 2023       |
| Golder L          | a Imper          | rial / Soil      | -Gradation 2 / Golder - 3 Imperial US / ASTM D2457 Auto (most commo                                              | n ASTM) | )/2023-04-13 |               |               |               |                                     |                                     |           |     |                  |                 |                                                                                                          | C    | HEU   | NEL   | J. J. /            | nuersor                 | 1                 |                   |                          |                     |                             | DATE: A                     | ipr 10, 2023      |

| CLIE<br>PRO<br>PRO<br>LOO | ENT<br>)JE(<br>)JE(<br>)JE( | CT:<br>CT I<br>ON | Rockwool<br>Project 67 Due Diligence<br>NO: 31405932<br>: Atallia, WA                                                                    | e    | RE                                                          | DATE: January 31, 2023<br>DATE: January 31, 2023<br>INCLINATION: -90.0°<br>COORD SYS: SP WA So<br>CONTRACTOR: Holt Services, Inc.<br>HORZ DATION: **<br>SAMPLES |       |             |                                       |                                    |        |                                                         | 509.0 ft (Existi<br>N: 288971.2 ft<br>SP WA South<br>NAD83 V | ng Grou<br>E: 204<br>FIPS 46<br>ERT DA | Sheet 1 of 2<br>and)<br>6589.5 ft<br>502 Ft<br>ATUM: NAVD88 |                      |                                       |            |                                                    |
|---------------------------|-----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|---------------------------------------|------------------------------------|--------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------|------------|----------------------------------------------------|
|                           | (1)                         | OD                | MATERIAL PROFIL                                                                                                                          | LE   |                                                             |                                                                                                                                                                 |       | ŝ           | SAMPI                                 | ES                                 |        | WATER CONTEN                                            | T GRAD                                                       | DATION                                 | % INE                                                       | 4G<br>F              | SPT N Value                           | NS         | CONSTRUCTION AND<br>INSTALLATION DETAILS           |
| EPTH (ft                  | RILL RIC                    | L METH            | DESCRIPTION                                                                                                                              | SCS  | RATA<br>OT                                                  | ELEV.                                                                                                                                                           | N.    | AST/<br>140 | Hamme<br>A D 1586, Bio<br>-Ib hammer, | r<br>wsper6in<br>30-in drop<br>202 | Щ      | H Plastic & Liquid<br>Limits (%)<br>O Water Content (%) | AVEL                                                         | AND                                    | IIC CONTI                                                   | DITION               | PENETRATION<br>RESISTANCE<br>BLOWS/FT | UNDWAT     | 2                                                  |
| D                         | Ō                           | DRIL              |                                                                                                                                          | ŝ    | PI                                                          | (ft)                                                                                                                                                            | NUMBE | TYPE        | REC                                   | BLOW                               | N-VALI | NP Nonplastic<br>927 00 127                             | -150<br>GR                                                   | S/                                     | ORGAN                                                       | AD                   | 20 40 60 80                           | GRC<br>OBS | Pipe Stickup: 2.00<br>ft                           |
| 1                         |                             |                   | Iopsoil; sandy, gray.<br>Qfs (Touchet beds)                                                                                              |      | <u>stile</u> <u>stile</u><br>14 stile<br>stile <u>stile</u> | 0.0                                                                                                                                                             |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            | 0.0 - 2.0 ft bas                                   |
| 2                         |                             |                   | (SM) Silty SAND, fine to coarse,<br>little non-plastic fines; tan to gray,<br>stratified in 4-inch lenses with<br>sand; dry, very dense. |      |                                                             | 1.0                                                                                                                                                             |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            | cement                                             |
| 3 4                       |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 5<br>6                    |                             |                   | - 5.0 ft: hammer type: wireline hammer, 140 lbs, 30 inch drop                                                                            |      |                                                             |                                                                                                                                                                 | S-1   | SS          | 80                                    | 17-32-34                           | 66     | -                                                       |                                                              |                                        |                                                             |                      | •                                     |            |                                                    |
| uluuluu                   |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             | с.                   |                                       |            |                                                    |
| 8                         |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 9<br>11111111             |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 10                        |                             |                   |                                                                                                                                          | SM   |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 12<br>13                  | CME 85                      | HSA               |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| uluu 14                   |                             |                   | - 14.0 ft: driller indicates gravel                                                                                                      |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 1 15                      |                             |                   | - 15.0 ft: slight iron oxide staining                                                                                                    |      |                                                             |                                                                                                                                                                 | S-2   | SS          | 100                                   | 36-50/5"                           |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 16                        |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 18                        |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            | 0 - 35 ft bgs:<br>plain pipe<br>2.0 - 34.0 ft bost |
| 19                        |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            | bentonite chips                                    |
| 20                        |                             |                   | (SP-SM) Poorly graded SAND                                                                                                               |      |                                                             | 489.0                                                                                                                                                           |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 21                        |                             |                   | with silt, fine to medium, few non-<br>plastic fines; gray; dry, very<br>dense.                                                          |      |                                                             | cmcn/5352                                                                                                                                                       |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 22                        |                             |                   |                                                                                                                                          | SM   |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 23                        |                             |                   |                                                                                                                                          | SP-  |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| 24                        |                             |                   |                                                                                                                                          |      |                                                             |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            |                                                    |
| - 25                      |                             |                   | Continued on Next Page                                                                                                                   |      |                                                             | I                                                                                                                                                               |       |             |                                       |                                    |        |                                                         |                                                              |                                        |                                                             |                      |                                       |            | DEV/                                               |
| HAN                       | IME                         | RT                | YPE:                                                                                                                                     |      |                                                             |                                                                                                                                                                 |       |             |                                       | 11                                 | 5      |                                                         |                                                              |                                        |                                                             |                      |                                       |            | 2                                                  |
| Golder Lo                 | a Imperij                   | al / Soil-(       | Stedation 2 / Golder - 3 Imperial US / ASTM D2457 Auto (most common                                                                      | ASTM | /2023-04-13                                                 |                                                                                                                                                                 |       |             |                                       |                                    |        |                                                         | LO<br>CH                                                     | GGED<br>ECKE                           | ): J.<br>D: J.                                              | Andersor<br>Andersor | ו<br>ז                                |            | DATE: Jan 31, 2023<br>DATE: Feb 24, 2023           |

|           | RECORD OF BOR                                             |             |                                                                                                     |         |              |                       |        |                   |                              | OREF                             | łC      | )LI   | Ξ:                                    | Ν                 | ΛV     | V-  | 11   |      |         |               |      |                            |                       |         |         | Sheet 2                        | of 2 |
|-----------|-----------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|---------|--------------|-----------------------|--------|-------------------|------------------------------|----------------------------------|---------|-------|---------------------------------------|-------------------|--------|-----|------|------|---------|---------------|------|----------------------------|-----------------------|---------|---------|--------------------------------|------|
|           | LIENT: Rockwool DATE:<br>ROJECT: Project 67 Due Diligence |             |                                                                                                     |         |              |                       |        | Ja                | inuary 31, 20                | 023                              |         |       | ELEVATION: 509.0 ft (Existing Ground) |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| PRC       | JE                                                        |             | NO: 31405932                                                                                        |         |              | IN                    | ICLIN  | CLINATION: -90.0° |                              |                                  |         |       |                                       |                   |        |     |      | 00   | RD      | SYS:          | SP V | VA So                      | outh I                | FIPS 46 | 02 Ft   |                                |      |
| LOC       | ATI                                                       | ON:         | Atallia, WA                                                                                         |         |              | C                     | ONTF   | RACTO             | R: Ho                        | olt Services,                    | Inc.    |       |                                       |                   |        |     | н    | ORZ  | Z DA    | ATUM:         | NAD  | 83                         | V                     | ERT DA  | TUM: N  | AVD88                          |      |
|           | (1)                                                       | DD          | MATERIAL PROFIL                                                                                     | LE      |              |                       |        |                   | SAMPI                        | LES                              |         | WAT   | ER C                                  | ONTE              | NT G   | RAD | ATIO | N %  | ENT %   | AL            | SP   | TNV                        | alue                  | IER     | CONST   | RUCTION AN                     | D    |
| TH (ft    | L RIG                                                     | METH        |                                                                                                     | s       | AT           | ELEV.                 |        | AST<br>14         | M D 1586, Bk<br>0-lb hammer. | r.<br>sws per 6 in<br>30-in drop |         | H Pla | istic &<br>nits (%)                   | Liquid<br>)       |        | E   |      | s    | CONT    | TION          |      | PENETF<br>RESIST/<br>BLOWS | RATION<br>ANCE<br>/FT |         |         |                                |      |
| DEP       | DRII                                                      | DRILL       | DESCRIPTION                                                                                         | nsc     | STRA         | DEPTH<br>(ft)         | NUMBER | TYPE              | REC %                        | SMOLB                            | N-VALUE |       | Nonp                                  | ntent (<br>lastic | 125 (% | GRA | SAN  | FINE | ORGANIC | ADDI<br>LAB T | 20   | 40 60                      | 80                    | GROUI   |         | Pipe Stickup: 2                | 2.00 |
|           |                                                           |             | (SP-SM) Poorly graded SAND<br>with silt, fine to medium, few non-<br>plastic fines; gray; dry, very |         |              |                       | S-3    | SS                | 100                          | 26-50/6"                         |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 20        |                                                           |             | dense.                                                                                              |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      | 2    |         |               |      |                            |                       |         |         |                                |      |
| 28        |                                                           |             |                                                                                                     | SP-SM   |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 20        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 30        |                                                           |             |                                                                                                     |         |              | 479.0                 |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 31        |                                                           |             | some fine to coarse, rounded,<br>some fine to coarse sand; brown,<br>heterogeneous: moist very      |         |              | 30.0                  |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 32        |                                                           |             | dense.<br>Qfg (Pasco gravles)<br>- 30.0 ft: coarse rounded gravel in                                |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 33        |                                                           |             | cuttings                                                                                            |         | 11.11        |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 34        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 35        | IE 85                                                     | ISA         |                                                                                                     | GW      |              |                       | S-4    | SS                | 100                          | 50/4"                            |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 36        | CN                                                        | T           |                                                                                                     |         | 11.12        |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 37        |                                                           |             |                                                                                                     |         | 10.1         |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 38        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 39        |                                                           |             |                                                                                                     |         | 9-49         |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 40        |                                                           |             | (ML) Sandy SILT with gravel,<br>mostly non-plastic fines, some                                      | +-      |              | 4 <u>69.0</u><br>40.0 |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         | 34.0 - 45.5 ft<br>bgs:<br>sand | 4    |
| 41<br>1   |                                                           |             | fine to coarse subrounded sand,<br>little fine to coarse subrounded<br>gravel, gray, heterogeneous; |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       | b23     |         | bgs:<br>Screen Interv          | π    |
| 42        |                                                           |             | moist, very dense.                                                                                  | _       |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       | 10Fe    |         |                                |      |
| 43<br>11  |                                                           |             |                                                                                                     | Z       |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 44        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 45        |                                                           |             | End of hole at 45.50 ft.                                                                            |         |              | 463.5                 | S-5    | SS                | 100                          | 50/6"                            |         | -     |                                       |                   |        | _   |      |      |         |               |      |                            |                       |         |         |                                |      |
| 46        |                                                           |             | Monitoring well developed upon<br>completion of installation.                                       |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 47        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 48        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| 50        |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         |                                |      |
| НАМ       | MF                                                        | RT          | TYPE:                                                                                               |         |              |                       |        |                   |                              |                                  |         |       |                                       |                   |        |     |      |      |         |               |      |                            |                       |         |         | REV:                           |      |
|           |                                                           |             |                                                                                                     |         |              |                       |        |                   |                              |                                  | 9       |       |                                       |                   |        | LO  | GGE  | D:   | J. A    | Andersor      | n    |                            |                       |         | DATE: J | ∠<br>an 31, 2023               |      |
| Golder Lo | Imperi                                                    | al / Soil-I | Gradation 2 / Golder - 3 Imperial US / ASTM D2487 Auto (most commo                                  | n ASTMI | / 2023-04-13 |                       |        |                   |                              |                                  |         |       |                                       |                   |        | СН  | ECK  | ED:  | J. A    | Anderson      | 1    |                            |                       |         | DATE: F | eb 24, 2023                    |      |















Drilling Method: Air Rotary Driller: Ron Sink Firm: Environmental West Exploration Consulting Firm: Pacific Groundwater Group Logged by: Jeff Witter Location: NE1/4 of NW1/4 Section 2 T07N R31E Well Name: WERC-C Ecology ID: APA 362 MP Elevation: ?? Datum: -Installed: 4/18/2007 DTW: 36.4' BGS on 4/18/2007 Page 1 of 1

DRAFT GEOLOGIC LOG AND AS-BUILT FOR WELL WERC-C Wallula Energy Resource Center Wallula, Washington JE0701, 4/2007

| Depth (ft)                 | Geology                                            | General<br>Unit                         | Soil<br>Sample            | Log                                                                                                                    |              | Well Construction  |                                                                                                                                                         |  |  |  |  |  |
|----------------------------|----------------------------------------------------|-----------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| -                          |                                                    |                                         |                           |                                                                                                                        |              |                    | Above-ground completion with ~2.5-foot well<br>stick-up and slip cap. Protected by locking yellow<br>steel stickup monument and three traffic bollards. |  |  |  |  |  |
| 0                          |                                                    | $\uparrow$                              |                           | Moist, light gray, silty, fine SAND (Loess).                                                                           | weath the co | 副放雪器牌 二十二          | Concrete 0-2 feet below ground surface (bgs)                                                                                                            |  |  |  |  |  |
| 5                          |                                                    |                                         |                           |                                                                                                                        |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 10-                        |                                                    |                                         |                           | 12 - 14 ft: sand grains are mostly fine, but range from fine to coarse                                                 |              |                    | 4" PVC Riser (0 - 207 feet bgs)                                                                                                                         |  |  |  |  |  |
| 15-                        |                                                    |                                         |                           |                                                                                                                        |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 20 -                       |                                                    |                                         |                           | Moist, light gray, silty, fine to coarse SAND.                                                                         |              |                    |                                                                                                                                                         |  |  |  |  |  |
| -                          |                                                    |                                         |                           | 22 -27 ft: trace pumice clasts present                                                                                 |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 25-                        |                                                    | Y SAND -                                |                           |                                                                                                                        |              |                    | 8" Borehole (0 - 217.75 feet bgs)                                                                                                                       |  |  |  |  |  |
| 30 -                       |                                                    | SILT SILT                               |                           | Moist, light gray, silty, fine SAND with trace pumice<br>clasts.<br>29-36 ft: silt content increases from ~25% to ~35% |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 35-                        |                                                    |                                         |                           |                                                                                                                        |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 40-                        |                                                    |                                         |                           | Moist, light gray, very silty, fine SAND.                                                                              |              |                    | Annular grout (2 - 201 feet bgs) made with ratio                                                                                                        |  |  |  |  |  |
|                            |                                                    |                                         |                           |                                                                                                                        |              |                    | of 1 lb bentonite to 1 lb Portland cement to 6 lbs water                                                                                                |  |  |  |  |  |
| 45 -                       |                                                    |                                         |                           |                                                                                                                        |              |                    |                                                                                                                                                         |  |  |  |  |  |
| 50 -                       |                                                    |                                         |                           | 50 - 54 ft: brown in color, moisture content increases, silt aggregates coated with sand present                       |              |                    |                                                                                                                                                         |  |  |  |  |  |
| Proje<br>Drillir<br>Drille | ct Name:<br>ng Method<br>r: Ron Sir                | Wallul<br>I: Air R<br>nk                | a Ene<br>otary            | rgy Resource Center Well Name: WERC-D<br>Ecology ID: APA 365<br>MP Elevation: ??                                       |              | Fig                | URE XX<br>OLOGIC LOG AND AS-BUILT                                                                                                                       |  |  |  |  |  |
| Logg                       | environn<br>ulting Firr<br>ed by: Glo<br>tion: SE1 | ental M<br>n: Paci<br>enn Mu<br>4 of SI | ific Gr<br>itti<br>E1/4 S | bundwater Group Installed: 4/23/2007 - 4/25/:<br>DTW: 57.08' BGS on 4/24/:<br>Section 2 T07N R31E Page 1 of 4          | 2007<br>2007 | Wal<br>Wal<br>JE07 | Iula Energy Resource Center<br>Iula, Washington<br>01, 4/2007                                                                                           |  |  |  |  |  |







| Project Name: Wallula Energy Resource Center |
|----------------------------------------------|
| Drilling Method: Air Rotary                  |
| Driller: Ron Sink                            |
| Firm: Environmental West Exploration         |
| Consulting Firm: Pacific Groundwater Group   |
| Logged by: Glenn Mutti                       |
| Location: SE1/4 of SE1/4 Section 2 T07N R31E |

Well Name: WERC-D Ecology ID: APA 365 MP Elevation: ?? Datum: -Installed: 4/23/2007 - 4/25/2007 DTW: 57.08' BGS on 4/24/2007 Page 4 of 4

Figure XX GEOLOGIC LOG AND AS-BUILT FOR WELL WERC-D Wallula Energy Resource Center Wallula, Washington JE0701, 4/2007

-

| Project: Boise Cascade - Walluia                   | Page <u>1</u> of <u>2</u> Date: 7/3/96                                                                                                                |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: Fiber Farm Road Monitoring Well CW-3     | Drilling Method:6-inch air rotary                                                                                                                     |
| Drilled By: Ponderosa Drilling & Development, Inc. | Logged By: Steven R. Ames                                                                                                                             |
| Start Date: 4/29/96 Total Depth: 73 feet TO        | C Elevation: 405.24 feet AMSL DTW: 100 fl. BGS                                                                                                        |
| Depth (ft)   As-Built                              | Lithology Lithologic Description                                                                                                                      |
| - 0 V. : N. T Concrete                             | 0 to 20 ft. SILT (ML): Low plasticity, low dry strengt<br>slow dilancy, low toughness, dry to moist, light bro-<br>silt.                              |
|                                                    | 20 to 34 ft. SAND WITH SILT (SP-SM): About 80% fine, subrounded, poorly sorted, hard, moist, brow sand; about 20% low plastic fines, no dry strength. |
|                                                    | 34 to 75 ft, MODERATELY SORTED SAND<br>(SP/SW): medium to fine, subangular to angular,<br>hard, moist, predominately dark grey sand.                  |
| - 40                                               |                                                                                                                                                       |
| - 50<br>- 0 to 53 ft. 6-inch steel<br>casing       |                                                                                                                                                       |
|                                                    |                                                                                                                                                       |
| 70 Continued                                       | EGR & Associates. Inc.                                                                                                                                |
|                                                    | T 2545 K Prane Road<br>Eugene, Oregon 87402                                                                                                           |

| Project: Soise (  | Cascade - Wallula                                                                                                                                                                                                                                                  | _ Page _                           | 2 of D;                                                                                                                                                                                                                                                                                                                                                                                                                                    | ate: _7/3/96                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Location: CW-3    |                                                                                                                                                                                                                                                                    | Drilling Method: 6-inch air rotary |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Drilled By: Pond  | derosa Drilling & Development, Inc.                                                                                                                                                                                                                                | Logged                             | By: Steven R. Ames                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Start Date: 4/29/ | <sup>196</sup> Total Depth: 100 ft. TO                                                                                                                                                                                                                             | C Elevation                        | : 405.24 feet AMSL 1                                                                                                                                                                                                                                                                                                                                                                                                                       | DTW: 73 ft. BGS                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Depth (ft)   A    | As-Built                                                                                                                                                                                                                                                           | Lithology                          | Lithologic De                                                                                                                                                                                                                                                                                                                                                                                                                              | scription                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Depth (ft) A      | As-Built<br>Bentonite<br>30-bags<br>8, 12 Colorado Siica<br>Sand<br>4-Bags<br>WELL<br>CONSTRUCTION<br>87 feet-2" Solid PVC<br>Casing<br>5 feet-2"-0.010 Slotted<br>PVC Casing<br>Centeralizers Inserted<br>at 52 and 92 feet.<br>One Monument<br>Three Guard Posts |                                    | Lithologic Des<br>Ground water encountered<br>75 to 78 ft. GRAVEL WITH<br>fine, subrounded, elongate<br>maximum size, 3 cm.; about<br>78 to 88 ft. GRAVELLY SAI<br>poorly sorted, angular, hard<br>about 35% fine, angular, fta<br>maximum size, 1 cm.<br>88 to 90 ft. CLAYEY GRAV<br>angular, flat, dark grey grav<br>about 35% plastic fines, mit<br>toughness, slow dilancy, w<br>90 to 100 ft. BASALT: Coa<br>bedrock; maximum size, 2 | at 75 ft.<br>SAND (GP): About 80%<br>d, wet dark gray gravel,<br>it 20% dark grey sand.<br>ND (SP-GP): About 65%<br>d, wet, dark grey gravel;<br>EL (GC): About 65% fine<br>vel, maximum size 1 cm.<br>edium dry strength, low<br>et, blue-green clay.<br>rse, hard, angular, black<br>cm., wet. |  |  |  |  |  |  |



30RING LOG



BORING LOG

| Project: _Boise Cascade - Wallula                                                                                                | Page <u>1</u> of <u>3</u> Date: <u>6/17/96</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: Fiber Farm Road Monitoring Well CW                                                                                     | V-5 Drilling Method: 6-inch air roatary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drilled By: Ponderosa Drilling and Developme                                                                                     | ent, Inc. Logged By: Steven R. Ames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Start Date: 5/3/96 Total Depth: 175 feet                                                                                         | TOC Elevation: 518.24 reet AMSL DTW: 134 ft. BGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth (ft) As-Built                                                                                                              | Lithology Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 10<br>- 10<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 42-Bags<br>- 40<br>- 50<br>- 50<br>- 50<br>- 70<br>- 70<br>- Continued | O to 37 leet (ft.) SAND (SP): fine, hard, subangula<br>to subrounded, moist to wet, brownish-grey sand. Subrounded, moist to wet, brownish-grey sand. Subangular to subrounded, moist, brown sand;<br>about 35% plastic fines; about 5% fine to coarse<br>gravel; maximum size 3 centimeters (cm.). 41 to 45 ft. SILTY SAND WITH GRAVEL (SM):<br>About 50% sand; about 25% silt; about 25% grave<br>45 to 50 ft. SAND WITH SILT AND GRAVEL (SM):<br>About 40% sand; about 25% silt; about 25% grave<br>50 to 56 ft. GRAVEL WITH SAND (GP): About<br>65% fine to medium, nard, sub angular gravel;<br>maximum size 30 cm.; about 15% fine to medium<br>sand. So to 70 ft. POORLY GRADED GRAVEL WITH<br>SAND (GP): About 50% fine to coarse, rounded<br>gravel; maximum size 30 cm.; About 30 % fine,<br>subrounded, moist to dry, brown sand. So to 70 ft. POORLY GRADED SAND WITH<br>GRAVEL (SP): About 50% fine to coarse,<br>subrounded, hard, moist to wet, brown sand; about<br>40% fine, angular gravel; maximum size 10 cm;<br>about 10% non-plastic fines. Subrounded, hard, moist to wet, brown sand; about<br>40% fine, angular gravel; maximum size 10 cm;<br>about 10% non-plastic fines. Subrounded, hard, moist to wet, brown sand; about<br>40% fine, angular gravel; maximum size 10 cm;<br>about 10% non-plastic fines. |
|                                                                                                                                  | V Engineers, Geologists and Surveyus<br>T 1545 X, Praine Road<br>Eugene, Oregon 87402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |




REV 3 - Approved for Submittal



REV 3 - Approved for Submittal



REV 3 - Approved for Submittal

| Total Depth:         53.75 ft.         Latitude:         ~ 46.11365 N           Top Elevation:         ~         Longitude:         ~ -118.91272 W           Vert. Datum:         Station:         ~           Horiz. Datum:         Offset:         ~                                                                                                                                                                           | Drilling Method<br>Drilling Company<br>Drill Rig Equipmen<br>Other Comments | : <u>Hollow Stem Auge</u><br>: <u>HazTech</u><br>: <u>BK81</u><br>: | r Hole Diam<br>Rod Diam<br>Hammer Type                                           | :: <u>8 in.</u><br>:: <u>NWJ - 2 5/8"</u><br>e: <u>Automatic</u>      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <b>SOIL DESCRIPTION</b><br>Refer to the report text for a proper understanding of the<br>subsurface materials and drilling methods. The stratification<br>lines indicated below represent the approximate boundaries<br>between material types, and the transition may be gradual.                                                                                                                                               | Depth, ft.<br>Symbol<br>Samples                                             | Ccreen<br>Screen<br>Design<br>Ham                                   | RATION RESISTA                                                                   | NCE (blows/foot)<br>40 lbs / 30 inches<br>40 60                       |
| (GP-GM); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand.         Outburst Flood Gravels    Weathered Basalt - drills as: Very dense, orange-brown to dark gray, Clayey Gravel with Sand (GC) to Clayey Sand (SC); moist; fine to coarse, subangular gravel; fine to coarse sand; low plasticity fines. Saddle Mountains Basalt Bottom of Boring - Auger Refusal on Basalt Completed 9/7/2018 | 49.5<br>53.8                                                                | 35<br>40<br>40<br>45<br>50<br>55                                    |                                                                                  | 50/1st 1."<br>50/1st 1."<br>50/1st 5.5"<br>50/1st 3.5"<br>50/1st 3.5" |
| LEGEND<br>* Sample Not Recovered ♀ Ground W<br>G Grab Sample<br>2.0" O.D. Split Spoon Sample                                                                                                                                                                                                                                                                                                                                     | 'ater Level ATD                                                             | 0                                                                   | 20<br>◇ % Fines (~<br>● % Water (                                                | 40 60<br><0.075mm)<br>Content                                         |
| NOTES  1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified at 3. USCS designation is based on visual-manual classification and a                                                                                                                                                                                                              | nd definitions.<br>nd may vary.<br>selected lab testing.                    | Ca<br>Wallu<br>Walla W<br>LOG                                       | ascade Natural Ga<br>ula HP 12-inch Pip<br>Valla County, Was<br><b>OF BORING</b> | as<br>beline<br>shington<br><b>B-09</b>                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | January 2019                                                        | 2                                                                                | 2-1-40040-003                                                         |
| MASTER                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             | SHANNON &<br>Geotechnical and Envir                                 | WILSON, INC.                                                                     | FIG. A-12<br>Sheet 2 of 2                                             |

REV 3 - Approved for Submittal

|                             | Total Depth:         32.6 ft.           Top Elevation:         ~           Vert. Datum:            Horiz. Datum:                                                                      | Latitude: <u>~ 46.11357 N</u><br>Longitude: <u>~ -118.91360 W</u><br>Station: <u>~</u><br>Offset: <u>~</u>                                                                                                                        | Dril<br>C                                                                                                                                                                                                                                          | Drilling<br>I Rig I<br>Other (  | ng Meth<br>Compa<br>Equipm<br>Comme | hod: _<br>any: _<br>nent: _<br>ents: _ | Hollow St<br>HazTech<br>CME 850 | em Auger Hole Diam<br>Rod Diam<br>Hammer Typ                         | .: <u>8 in.</u><br>.: <u>NWJ - 2 5/8"</u><br>e: <u>Automatic</u> |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|----------------------------------------|---------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--|
|                             | SOIL DESCR<br>Refer to the report text for a pro<br>subsurface materials and drilling r<br>lines indicated below represent th<br>between material types, and the                      | IPTION<br>oer understanding of the<br>nethods. The stratification<br>e approximate boundaries<br>ransition may be gradual.                                                                                                        | Depth, ft.                                                                                                                                                                                                                                         | Symbol                          | Samples                             | Screen                                 | Design<br>Depth, ft.            | PENETRATION RESISTA<br>A Hammer Wt. & Drop:<br>0 20                  | NCE (blows/foot)<br>140 lbs / 30 inches<br>40 60                 |  |
|                             | Dense, brown, <i>Silty Sand</i><br>moist; subangular to subro<br>3/4-inch; fine sand; nonpla<br><b>Outburst Flood F</b>                                                               | with Gravel (SM);<br>ounded gravel up to<br>stic fines.<br><b>ine-Grained</b>                                                                                                                                                     |                                                                                                                                                                                                                                                    |                                 |                                     |                                        |                                 | 5                                                                    |                                                                  |  |
|                             | Dense to very dense, brow<br>Graded Gravel with Silt an<br>moist to wet; subangular to<br>up to 2 inches; fine to coar<br>fines.                                                      | vn/gray, <i>Poorly<br/>d Sand (GP-GM</i> );<br>o subrounded gravel<br>rse sand; nonplastic                                                                                                                                        | 12.0                                                                                                                                                                                                                                               |                                 | 5.3                                 |                                        | 15                              |                                                                      | 50/5.5*4                                                         |  |
| 1                           | Outburst Flood<br>Dense, brown/gray, Poorly<br>Silt and Gravel (SP-SM); of<br>subangular to subrounded<br>inches; fine to coarse sand<br>Outburst Flood                               | Outburst Flood Gravels<br>se, brown/gray, <i>Poorly Graded Sand with</i><br>and Gravel (SP-SM); dry; trace to few<br>ingular to subrounded gravel up to 2<br>es; fine to coarse sand; nonplastic fines.<br>Outburst Flood Gravels | Outburst Flood Gravels<br>ense, brown/gray, <i>Poorly Graded Sand with</i><br><i>It and Gravel (SP-SM)</i> ; dry; trace to few<br>ibangular to subrounded gravel up to 2<br>ches; fine to coarse sand; nonplastic fines.<br>Outburst Flood Gravels | 17.0                            |                                     | s-                                     | During Drilling                 | 20                                                                   |                                                                  |  |
| 9 Log: LJR Rev: LJR Typ: JM | Weathered Basalt - Drills I<br>dense, black, <i>Poorly Grad</i><br><i>and Sand (GP-GM</i> ); moist<br>to angular gravel up to 2 in<br>sand; nonplastic fines.<br><b>Saddle Mounta</b> | ike: Dense to very<br>ed Gravel with Silt<br>to wet; subangular<br>nches; fine to coarse<br>ins Basalt                                                                                                                            | 23.0                                                                                                                                                                                                                                               |                                 |                                     |                                        | 25                              |                                                                      | 50/3*4                                                           |  |
| HAN WIL.GDT 1/23/1          | CONTINUED <ul> <li>Sample Not Recovered</li> <li>2.0" O.D. Split Spoon Sample</li> </ul>                                                                                              | NEXT SHEET<br>LEGEND<br>및 Ground V                                                                                                                                                                                                | Vater L                                                                                                                                                                                                                                            | evel A                          | и<br>ГD                             |                                        |                                 | 0 20                                                                 | 40 60<br><0.075mm)<br>Content                                    |  |
| T_SONIC_22-1-40040.GPJ_SH   | <ol> <li>Refer to KEY for explanation of</li> <li>Groundwater level, if indicated</li> <li>USCS designation is based on</li> </ol>                                                    | NOTES<br>symbols, codes, abbreviations<br>above, is for the date specified a<br>visual-manual classification and                                                                                                                  | and def<br>and ma<br>selecte                                                                                                                                                                                                                       | initions<br>y vary.<br>ed lab t | s.<br>esting.                       |                                        |                                 | Cascade Natural G<br>Wallula HP 12-inch Pi<br>Walla Walla County, Wa | as<br>peline<br>shington<br><b>B B-10</b>                        |  |
| R LOG JW                    |                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                 |                                     |                                        | Januar                          | ry 2019 2                                                            | 22-1-40040-003                                                   |  |
| MASTE                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                 |                                     |                                        | Geotechni                       | INDIN & WILSON, INC.                                                 | FIG. A-13<br>Sheet 1 of 2                                        |  |

REV 3 - Approved for Submittal



REV 3 - Approved for Submittal

| 1 10030 | pinn, | əiyi i anu | IGUIII | ~y | <br> | Department |  |
|---------|-------|------------|--------|----|------|------------|--|
|         |       |            |        |    |      |            |  |

|                                         | <b>LESOURCE PROTECTION WE</b>                                                                                                                                                                                                                                                                                                                                               | LL REPORT                                                       | -  | CURRENT No                                                                                                   | tice of Intent No. SE53114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>OIL</b>                              | SUBMIT ONE WELL REPORT PER WELL<br>onstruction/Decommission (select one)<br>Construction<br>Decommission ORIGINAL INSTALLATION N                                                                                                                                                                                                                                            | INSTALLED)                                                      |    | Ту                                                                                                           | <b>pe of Well</b> ( <i>select one</i> )<br>☐ Resource Protection<br>✓ Geotech Soil Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 2                                       | of Intent Number                                                                                                                                                                                                                                                                                                                                                            |                                                                 |    | Property Owner POR                                                                                           | Γ OF WALLA WALLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 2                                       | onsulting Firm SHANNON & WILSON                                                                                                                                                                                                                                                                                                                                             |                                                                 |    | Site Address 46.12058                                                                                        | 6 -118.907449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Ĩ,                                      | nique Ecology Well ID<br>ag No.                                                                                                                                                                                                                                                                                                                                             |                                                                 |    | City WALLULA                                                                                                 | County WALLA WALLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EWM |
| V ZINU NU NU NU                         | <ul> <li>'ELL CONSTRUCTION CERTIFICATION: 1 c cept responsibility for construction of this well, and its comp ashington well construction standards. Materials used and the over are true to my best knowledge and belief.</li> <li>Driller Engineer Trainee Name (Print) MIKE COR riller/Engineer /Trainee Signature Muke Corriller or Trainee License No. 2833</li> </ul> | onstructed and/or<br>liance with all<br>ne information reported |    | Location <u>NW1/4-1/4 N</u><br>Lat/Long (s, t, r<br>still REQUIRED)<br>Tax Parcel No<br>Cased or Uncased Dia | w1/4       Sec 2       Twn /N       R 31       Image: Constraint of the sec sector of the sector of t | wwm |
| 2                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | 2  | Work/Decommission S                                                                                          | Start Date 11/07/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Шſ                                      | trainee, licensed driller's                                                                                                                                                                                                                                                                                                                                                 |                                                                 |    | Work/Decommission (                                                                                          | Completed Date 11/07/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Ĕ                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | J  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Ŀ                                       | Construction/Design                                                                                                                                                                                                                                                                                                                                                         |                                                                 | We | ell Data                                                                                                     | Formation Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| ingy wes not waranty the vata ani/or th | HSA TO A DEPTH OF 25' BGS.                                                                                                                                                                                                                                                                                                                                                  | # 4/7<br>TRANSMISSION                                           | LF | NE                                                                                                           | 0-7 SAND<br>7-35 DENSE SAND AND GRAVELS,<br>W/LARGE COBBLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| ino neparimentor au                     |                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |    |                                                                                                              | RECEIVED<br>DEC 112014<br>Department of Ecology<br>Eastern Regional Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|                                         | NOT TO SCALE                                                                                                                                                                                                                                                                                                                                                                | 1                                                               |    | 1                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |

|                                                              | <b>RESOURCE PROTECTION WE</b>                                                                                                                                                                                                                                                                                                                                                                            | LL REPORT               | CURRENT No                                                                                                                                                          | tice of Intent No. AE29477                                                                                                                                                                                                                                                      |     |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| JUC                                                          | SUBMIT ONE WELL REPORT PER WELL<br>Construction/Decommission (select one)<br>Construction<br>Decommission ORIGINAL INSTALLATION No.                                                                                                                                                                                                                                                                      | INSTALLED)              | Ту<br>[<br>[                                                                                                                                                        | ■ of Well (select one)<br>■ Resource Protection<br>▼ Geotech Soil Boring                                                                                                                                                                                                        |     |
| 1.                                                           | of Intent Number <u>SE53</u>                                                                                                                                                                                                                                                                                                                                                                             | 113                     | Property Owner PORT                                                                                                                                                 | OF WALLA WALLA                                                                                                                                                                                                                                                                  |     |
| -                                                            | Consulting Firm SHANNON & WILSON                                                                                                                                                                                                                                                                                                                                                                         |                         | Site Address <u>46.12398</u>                                                                                                                                        | 9 -118.903866                                                                                                                                                                                                                                                                   |     |
| L'                                                           | ag No.                                                                                                                                                                                                                                                                                                                                                                                                   |                         | City WALLULA                                                                                                                                                        | County WALLA WALLA                                                                                                                                                                                                                                                              | EWM |
| Y ZITTA TIO TIO TIDIATING                                    | ELL CONSTRUCTION CERTIFICATION: I constructed and/or<br>ept responsibility for construction of this well, and its compliance with all<br>ushington well construction standards. Materials used and the information reported<br>we are true to my best knowledge and belief.<br>Driller Engineer Trainee Name (Print) MIKE CORN<br>iller/Engineer /Trainee Signature //////////////////////////////////// |                         | Location <u>NE</u> 1/4-1/4 <u>N</u><br>Lat/Long (s, t, r<br>still REQUIRED)<br>Tax Parcel No<br>Cased or Uncased Dian<br>Work/Decommission S<br>Work/Decommission C | /1/4       Sec 2       Twn /N       R 31       Image: www.sec.         Lat Deg       Lat Min/Sec       Lat Min/Sec         Long Deg       Long Min/Sec         neter       8.5"       Static Level DRY         art Date       11/05/2014         ompleted Date       11/05/2014 |     |
| ШЩ                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | )                       |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |     |
| ų,                                                           | Construction/Design                                                                                                                                                                                                                                                                                                                                                                                      | W                       | ell Data                                                                                                                                                            | Formation Description                                                                                                                                                                                                                                                           |     |
| из ло/лие втел ана Алецеии. Кол каото Абоюза то паети мает а | HSA TO A DEPTH OF 25" BGS. FILL THE<br>AUGERS WITH 3 BAGS OF 3/8" BENTONITE<br>CHIPS, THEN PULL OUT THE AUGERS<br>AND POUR IN 5 MORE BAGS TO 1 FOOT<br>FROM THE SURFACE THEN DRILL<br>CUTTINGS TO MATCH THE SURFACE.                                                                                                                                                                                     | # 4/3<br>TRANSMISSION L | INE                                                                                                                                                                 | 0-13 SAND, TAN, FINE<br>13-25 SAND W/GRAVEL LENSES                                                                                                                                                                                                                              |     |
|                                                              | NOT TO SCALE                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | 1                                                                                                                                                                   | L                                                                                                                                                                                                                                                                               |     |

|                                                     | <b><i>LESOURCE PROTECTION WEI</i></b>                                                                                                                                                                                                           | L REPORT                                                          | CURRENT Not                                                                    | ice of Intent No. AE29478                                                                             | -               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|
| 2011                                                | SUBMIT ONE WELL REPORT PER WELL I<br>ionstruction/Decommission (select one)<br>Construction<br>Decommission ORIGINAL INSTALLATION No                                                                                                            | INSTALLED)                                                        | Тур<br>[<br>[                                                                  | e of Well (select one)<br>Resource Protection<br>Geotech Soil Boring                                  |                 |
| ¥                                                   | of Intent Number <u>SE331</u>                                                                                                                                                                                                                   | 14                                                                | Property Owner PORT                                                            | OF WALLA WALLA                                                                                        |                 |
| =                                                   | onsulting Firm SHANNON & WILSON                                                                                                                                                                                                                 |                                                                   | Site Address <u>46.120586</u>                                                  | <u>-118.907449</u>                                                                                    | _               |
| ł                                                   | ag No.                                                                                                                                                                                                                                          |                                                                   | City WALLULA                                                                   | County WALLA WALLA                                                                                    | WM              |
| א כוווז ווט ו                                       | <ul> <li>'ELL CONSTRUCTION CERTIFICATION: 1 co cept responsibility for construction of this well, and its compliashington well construction standards. Materials used and the ove are true to my best knowledge and belief.</li> <li></li></ul> | nstructed and/or<br>iance with all<br>e information reported<br>N | Location <u>NW</u> 1/4-1/4 <u>NV</u><br>Lat/Long (s, t, r ]<br>still REQUIRED) | V1/4         Sec 2         Twn /N         R 31         Image: wide wide wide wide wide wide wide wide | /WM             |
| 5                                                   | riller/Engineer / Trainee Signature /                                                                                                                                                                                                           |                                                                   | Cased or Uncased Dian                                                          | neter 8.5" Static Level 22                                                                            |                 |
| d.                                                  | riller or Trainee License No. 2833                                                                                                                                                                                                              |                                                                   | Work Decommission P                                                            | art Data 11/07/2014                                                                                   |                 |
| Ē                                                   | trainee, licensed driller's                                                                                                                                                                                                                     |                                                                   | work/Decommission St                                                           | art Date 11/07/2014                                                                                   |                 |
| ē                                                   | ignature and License No. 2833                                                                                                                                                                                                                   | ]                                                                 | Work/Decommission C                                                            | ompleted Date                                                                                         |                 |
| Ξ                                                   |                                                                                                                                                                                                                                                 |                                                                   | 1 (EE 1700) 0                                                                  |                                                                                                       |                 |
| E                                                   | Construction/Design                                                                                                                                                                                                                             | W                                                                 | ell Data                                                                       | Formation Description                                                                                 |                 |
| נסומלא ממבא ארמו אימונימונא נוויה המנימ שווזיומי נו | HSA TO A DEPTH OF 25' BGS. PULL OUT<br>THE AUGERS AND POUR IN 12 BAGS OF<br>3/8" BENTONITE CHIPS TO 1 FOOT FROM<br>THE SURFACE, THEN DRILL CUTTINGS TO<br>MATCH THE SURFACE FOR THE<br>REMAINDER.                                               | # 4/7<br>TRANSMISSION L                                           | INE                                                                            | 0-7 SAND<br>7-35 DENSE SAND AND GRAVELS,<br>W/LARGE COBBLES                                           |                 |
|                                                     | _                                                                                                                                                                                                                                               |                                                                   | F                                                                              |                                                                                                       | <br>            |
| E                                                   |                                                                                                                                                                                                                                                 |                                                                   |                                                                                | men I I SUN 19                                                                                        | 1               |
| ningan an                                           |                                                                                                                                                                                                                                                 |                                                                   | Dep<br>East                                                                    | ortment of Ecology<br>orn Regional Office                                                             | .<br> <br> <br> |
|                                                     | NOT TO SCALE                                                                                                                                                                                                                                    | 1                                                                 | 1                                                                              |                                                                                                       |                 |

|        | <b>RESOURCE PROTECTION WE</b>                                                                                   | LL REPORT               | CURRENT No                    | tice of Intent No. SE53113                                            | _      |
|--------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|-----------------------------------------------------------------------|--------|
|        | SUBMIT ONE WELL REPORT PER WELL                                                                                 | INSTALLED)              | Τ                             | of Wall (salast and)                                                  |        |
|        | Construction/Decommission (select one)                                                                          |                         | ı yı                          | Resource Protection                                                   |        |
|        | Construction                                                                                                    |                         | L                             | Geotech Soil Boring                                                   |        |
| 3      | ] Decommission ORIGINAL INSTALLATION No.                                                                        | otice                   |                               |                                                                       |        |
| ¥      | of Intent Number                                                                                                |                         | Property Owner PORT           | OF WALLA WALLA                                                        |        |
| Ξ      | Sonsulting Firm SHANNON & WILSON                                                                                |                         | Site Address <u>46.123989</u> | 9 -118.903866                                                         |        |
| F      | ag No                                                                                                           |                         | City WALLULA                  | County WALLA WALLA                                                    | EWM    |
| 2      | /ELL CONSTRUCTION CERTIFICATION: 1 ca                                                                           | onstructed and/or       | Location <u>NE</u> 1/4-1/4 N  | $\frac{1}{4}$ Sec $\frac{2}{2}$ $1$ Wh $\frac{1}{4}$ R $\frac{31}{2}$ | WWM    |
| 5      | cept responsibility for construction of this well, and its compl                                                | liance with all         | Lat/Long (str                 | Lat Deg Lat Min/Sec                                                   |        |
| Ш      | 'ashington well construction standards. Materials used and th<br>wove are true to my best knowledge and belief. | e information reported  | still REQUIRED)               | Long Deg Long Min/Sec                                                 |        |
| Ě      | Driller Engineer Trainee Name (Print) MIKE COR                                                                  | N                       | Tax Parcel No                 |                                                                       |        |
| 2      | riller/Engineer /Trainee Signature                                                                              |                         | Cased or Uncased Dian         | meter 8,5" Static Level DRY                                           |        |
|        | Tiller or Trainee License No. <u>2833</u>                                                                       |                         | Work/Decommission S           | tart Date 11/05/2014                                                  |        |
|        | f trainee, licensed driller's                                                                                   |                         | Work/Decommission C           | completed Date 11/05/2014                                             |        |
| 3      | ignature and License No. 2833                                                                                   | )                       |                               |                                                                       |        |
| =      | Construction/Design                                                                                             | W                       | all Data                      | Formation Description                                                 |        |
| Ē      | Construction/Design                                                                                             | V                       | cli Data                      |                                                                       | 1      |
| 5      | HSA TO A DEPTH OF 25" BGS.                                                                                      | # 4/3<br>TRANSMISSION L | INE                           | 13-25 SAND W/GRAVEL LENSES                                            | í.     |
| S.     |                                                                                                                 |                         |                               |                                                                       | ÷      |
|        |                                                                                                                 |                         |                               |                                                                       | 1      |
| ą      |                                                                                                                 |                         |                               |                                                                       | 1      |
| P      |                                                                                                                 |                         | *                             |                                                                       | I      |
| 1      |                                                                                                                 |                         |                               | •                                                                     | I      |
| Ĕ.     | _                                                                                                               |                         |                               |                                                                       | 1      |
| 2      |                                                                                                                 |                         |                               |                                                                       | ı<br>T |
| Ξ      |                                                                                                                 |                         |                               |                                                                       | 1      |
|        |                                                                                                                 |                         |                               |                                                                       | 1      |
| 23     |                                                                                                                 |                         |                               |                                                                       | I      |
| _      | 1                                                                                                               | a.                      |                               |                                                                       |        |
| 2      |                                                                                                                 |                         |                               |                                                                       | Ι      |
| г<br>Л | _                                                                                                               |                         |                               |                                                                       | 1      |
|        |                                                                                                                 |                         |                               |                                                                       | 1      |
| Ş.     |                                                                                                                 |                         |                               |                                                                       | -      |
| 3      | 1                                                                                                               |                         |                               |                                                                       | 1      |
| ĝ      | 8                                                                                                               |                         |                               | REGEIVED                                                              |        |
| 3      | I                                                                                                               |                         |                               | HEC & C PRILS                                                         | 1      |
|        |                                                                                                                 |                         |                               | Alexander of the second                                               | 1      |
| 3      | _                                                                                                               |                         |                               | Donoctorona co la cale any                                            | 1      |
| 1      |                                                                                                                 |                         |                               | Uniter Register Offer                                                 | 1      |
|        |                                                                                                                 |                         |                               |                                                                       | 1      |
|        |                                                                                                                 |                         |                               |                                                                       | 1      |
| d      |                                                                                                                 |                         |                               |                                                                       |        |
| 5      | 1                                                                                                               |                         |                               |                                                                       | 1      |
| 뉟      |                                                                                                                 |                         |                               |                                                                       |        |
|        | NOT TO SCALE                                                                                                    | 1                       | 1                             |                                                                       |        |

# APPENDIX C Stability and Seepage Analysis Results

# \_\_\_ rocscience



Wallula Gap Business Park Roads Slope Stability Analysis Anderson Perry Date Created: 6/6/2023, 3:20:59 PM Software Version: 9.027

# **Table of Contents**

| Project Summary                            | . 4 |
|--------------------------------------------|-----|
| Currently Open Scenarios                   | . 4 |
| General Settings                           | . 6 |
| Analysis Options                           | . 7 |
| All Open Scenarios                         | . 7 |
| Groundwater Analysis                       | . 8 |
| Static - 2H:1V Fill Slope                  | . 8 |
| Seismic - 2H:1V Fill Slope                 | . 8 |
| Static - 2H:1V Cut Slope                   | . 8 |
| Seismic - 2H:1V Cut Slope                  | . 8 |
| Static - 2.2H:1V Cut Slope                 | . 8 |
| Seismic - 2.2H:1V Cut Slope                | 9   |
| Static - 2H:1V Cut Slope - High GWT        | . 9 |
| Seismic - 2H:1V Cut slope - High GWT       | 9   |
| 2H:1V Cut Slope - High GWT Solution        | 9   |
| 2.2H:1V Cut Slope - Very High GWT Solution | 10  |
| Surface Options                            | 11  |
| All Open Scenarios                         | 11  |
| Seismic Loading                            | 12  |
| Static - 2H:1V Fill Slope                  | 12  |
| Seismic - 2H:1V Fill Slope                 | 12  |
| Static - 2H:1V Cut Slope                   | 12  |
| Seismic - 2H:1V Cut Slope                  | 12  |
| Static - 2.2H:1V Cut Slope                 | 12  |
| Seismic - 2.2H:1V Cut Slope                | 12  |
| Static - 2H:1V Cut Slope - High GWT        | 12  |
| Seismic - 2H:1V Cut slope - High GWT       | 12  |
| 2H:1V Cut Slope - High GWT Solution        | 12  |
| 2.2H:1V Cut Slope - Very High GWT Solution | 13  |
| Loading                                    | 14  |
| Static - 2H:1V Fill Slope                  | 14  |
| Seismic - 2H:1V Fill Slope                 | 14  |
| Materials                                  | 15  |
| Materials In Use                           | 15  |
| Global Minimums                            | 17  |
| Static - 2H:1V Fill Slope                  | 17  |
| Method: bishop simplified                  | 17  |
| Method: janbu simplified                   | 17  |
| Seismic - 2H:1V Fill Slope                 | 17  |
| Method: bishop simplified                  | 17  |
| Method: janbu simplified                   | 17  |
| Static - 2H:1V Cut Slope                   | 18  |

| Method: bishop simplified                  | 18   |
|--------------------------------------------|------|
| Method: janbu simplified                   | . 18 |
| Seismic - 2H:1V Cut Slope                  | 18   |
| Method: bishop simplified                  | 18   |
| Method: janbu simplified                   | . 18 |
| Static - 2.2H:1V Cut Slope                 | 19   |
| Method: bishop simplified                  | 19   |
| Method: janbu simplified                   | . 19 |
| Seismic - 2.2H:1V Cut Slope                | 19   |
| Method: bishop simplified                  | 19   |
| Method: janbu simplified                   | . 19 |
| Static - 2H:1V Cut Slope - High GWT        | . 20 |
| Method: bishop simplified                  | 20   |
| Method: janbu simplified                   | 20   |
| Seismic - 2H:1V Cut slope - High GWT       | 20   |
| Method: bishop simplified                  | 20   |
| Method: janbu simplified                   | . 20 |
| 2H:1V Cut Slope - High GWT Solution        | 21   |
| Method: bishop simplified                  | 21   |
| Method: janbu simplified                   | . 21 |
| 2.2H:1V Cut Slope - Very High GWT Solution | 21   |
| Method: bishop simplified                  | 21   |
| Method: janbu simplified                   | . 21 |
|                                            |      |

# **Slide2 Analysis Information**

# Wallula Gap Business Park Roads

# **Project Summary**

File Name: Slide2 Modeler Version: Project Title: Author: Company: Date Created: Wallula Gap Business Park Roads.slmd 9.027 Slope Stability Analysis Andrew Robinson, P.E. Anderson Perry 6/6/2023, 3:20:59 PM

**Currently Open Scenarios** 

| Group N                                             | ame        | Scenario Name   | Global Minimum                                                  | Compute Time    |
|-----------------------------------------------------|------------|-----------------|-----------------------------------------------------------------|-----------------|
| Static - 2H:1V<br>Fill Slope                        | <b></b>    | Master Scenario | Bishop Simplified:<br>1.349310<br>Janbu Simplified:<br>1.349030 | 00h:00m:00.517s |
| Seismic -<br>2H:1V Fill<br>Slope                    | <b>♦</b>   | Master Scenario | Bishop Simplified:<br>1.012010<br>Janbu Simplified:<br>1.012750 | 00h:00m:00.600s |
| Static - 2H:1V<br>Cut Slope                         | ۲          | Master Scenario | Bishop Simplified:<br>1.250390<br>Janbu Simplified:<br>1.249750 | 00h:00m:00.519s |
| Seismic -<br>2H:1V Cut<br>Slope                     | \$         | Master Scenario | Bishop Simplified:<br>0.938334<br>Janbu Simplified:<br>0.938491 | 00h:00m:00.656s |
| Static -<br>2.2H:1V Cut<br>Slope                    | \$         | Master Scenario | Bishop Simplified:<br>1.375700<br>Janbu Simplified:<br>1.374720 | 00h:00m:00.534s |
| Seismic -<br>2.2H:1V Cut<br>Slope                   | \$         | Master Scenario | Bishop Simplified:<br>1.017160<br>Janbu Simplified:<br>1.017960 | 00h:00m:00.599s |
| Static - 2H:1V<br>Cut Slope -<br>High GWT           | \$         | Master Scenario | Bishop Simplified:<br>1.192890<br>Janbu Simplified:<br>1.067370 | 00h:00m:00.524s |
| Seismic -<br>2H:1V Cut<br>slope - High<br>GWT       | $\diamond$ | Master Scenario | Bishop Simplified:<br>0.893788<br>Janbu Simplified:<br>0.799098 | 00h:00m:00.563s |
| 2H:1V Cut<br>Slope - High<br>GWT Solution           | <b>◇</b>   | Master Scenario | Bishop Simplified:<br>0.938334<br>Janbu Simplified:<br>0.938491 | 00h:00m:00.669s |
| 2.2H:1V Cut<br>Slope - Very<br>High GWT<br>Solution | \$         | Master Scenario | Bishop Simplified:<br>1.017160<br>Janbu Simplified:<br>0.947840 | 00h:00m:00.636s |

# **General Settings**

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Imperial Units days feet/day Standard Right to Left

# **Analysis Options**

### All Open Scenarios

| Slices Type:                                                                | Vertical          |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------|--|--|--|--|
| Analysis Methods Used                                                       |                   |  |  |  |  |
|                                                                             | Bishop simplified |  |  |  |  |
|                                                                             | Janbu simplified  |  |  |  |  |
| Number of slices:                                                           | 50                |  |  |  |  |
| Tolerance:                                                                  | 0.005             |  |  |  |  |
| Maximum number of iterations:                                               | 75                |  |  |  |  |
| Check malpha < 0.2:                                                         | Yes               |  |  |  |  |
| Create Interslice boundaries at intersections with water tables and piezos: | Yes               |  |  |  |  |
| Initial trial value of FS:                                                  | 1                 |  |  |  |  |
| Steffensen Iteration:                                                       | Yes               |  |  |  |  |
| Eliminate vertical segments in non-circular search                          | Yes               |  |  |  |  |

# **Groundwater Analysis**

### Static - 2H:1V Fill Slope

Groundwater Method: Pore Fluid Unit Weight [lbs/ft3]: Tolerance: Maximum number of iterations: Use negative pore pressure cutoff: Advanced Groundwater Method: Mesh Element Type: Number of Elements: Number of Nodes:

### Seismic - 2H:1V Fill Slope

Groundwater Method: Steady State FEA Pore Fluid Unit Weight [lbs/ft3]: 62.4 0.001 Tolerance: Maximum number of iterations: 500 Use negative pore pressure cutoff: No Advanced Groundwater Method: None Mesh Element Type: 3 noded triangles Number of Elements: 548 Number of Nodes: 329

### Static - 2H:1V Cut Slope

Groundwater Method: Pore Fluid Unit Weight [lbs/ft3]: Tolerance: Maximum number of iterations: Use negative pore pressure cutoff: Advanced Groundwater Method: Mesh Element Type: Number of Elements: Number of Nodes:

### Seismic - 2H:1V Cut Slope

Groundwater Method: Pore Fluid Unit Weight [lbs/ft3]: Tolerance: Maximum number of iterations: Use negative pore pressure cutoff: Advanced Groundwater Method: Mesh Element Type: Number of Elements: Number of Nodes: 3 noded triangles 568 338 Steady State FEA 62.4 0.001 500

Steady State FEA

62.4 0.001

500

No

None

Steady State FEA

3 noded triangles

62.4

0.001

500

No

None

548

329

0.001 500 No None 3 noded triangles 568 338



| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 561               |
| Number of Nodes:                   | 334               |

Seismic - 2.2H:1V Cut Slope

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 561               |
| Number of Nodes:                   | 334               |

### Static - 2H:1V Cut Slope - High GWT

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 568               |
| Number of Nodes:                   | 338               |

### Seismic - 2H:1V Cut slope - High GWT

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 568               |
| Number of Nodes:                   | 338               |

### 2H:1V Cut Slope - High GWT Solution

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 620               |
| Number of Nodes:                   | 366               |
|                                    |                   |

## 2.2H:1V Cut Slope - Very High GWT Solution

| Groundwater Method:                | Steady State FEA  |
|------------------------------------|-------------------|
| Pore Fluid Unit Weight [lbs/ft3]:  | 62.4              |
| Tolerance:                         | 0.001             |
| Maximum number of iterations:      | 500               |
| Use negative pore pressure cutoff: | No                |
| Advanced Groundwater Method:       | None              |
| Mesh Element Type:                 | 3 noded triangles |
| Number of Elements:                | 645               |
| Number of Nodes:                   | 380               |

# **Surface Options**

#### **All Open Scenarios**

Surface Type: Search Method: Divisions along slope: Circles per division: Number of iterations: Divisions to use in next iteration: Composite Surfaces: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Auto Refine Search 20 10 10 50% Disabled Not Defined Not Defined Not Defined Not Defined Not Defined

# **Seismic Loading**

| Static - 2H:1V Fill Slope              |       |  |  |  |
|----------------------------------------|-------|--|--|--|
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic - 2H:1V Fill Slope             |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic Load Coefficient (Horizontal): | 0.131 |  |  |  |
| Seismic Load Coefficient (Vertical):   | 0.052 |  |  |  |
| Static - 2H:1V Cut Slope               |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic - 2H:1V Cut Slope              |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic Load Coefficient (Horizontal): | 0.131 |  |  |  |
| Seismic Load Coefficient (Vertical):   | 0.052 |  |  |  |
| Static - 2.2H:1V Cut Slope             |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic - 2.2H:1V Cut Slope            |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic Load Coefficient (Horizontal): | 0.131 |  |  |  |
| Seismic Load Coefficient (Vertical):   | 0.052 |  |  |  |
| Static - 2H:1V Cut Slope - High GWT    |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic - 2H:1V Cut slope - High GWT   |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic Load Coefficient (Horizontal): | 0.131 |  |  |  |
| Seismic Load Coefficient (Vertical):   | 0.052 |  |  |  |
| 2H:1V Cut Slope - High GWT Solution    |       |  |  |  |
| Advanced seismic analysis:             | No    |  |  |  |
| Staged pseudostatic analysis:          | No    |  |  |  |
| Seismic Load Coefficient (Horizontal): | 0.131 |  |  |  |

Seismic Load Coefficient (Vertical):

0.052

## 2.2H:1V Cut Slope - Very High GWT Solution

| Advanced seismic analysis:             | No    |
|----------------------------------------|-------|
| Staged pseudostatic analysis:          | No    |
| Seismic Load Coefficient (Horizontal): | 0.131 |
| Seismic Load Coefficient (Vertical):   | 0.052 |

# Loading

#### Static - 2H:1V Fill Slope

 Distribution: Magnitude [psf]: Orientation:

### Seismic - 2H:1V Fill Slope

 Distribution: Magnitude [psf]: Orientation: Constant 240 Normal to boundary

Constant 240 Normal to boundary

# **Materials**

| Fill                                        |                    |
|---------------------------------------------|--------------------|
| Color                                       |                    |
| Strength Type                               | Mohr-Coulomb       |
| Unit Weight [lbs/ft3]                       | 120                |
| Cohesion [psf]                              | 0                  |
| Friction Angle [deg]                        | 34                 |
| Unsaturated Shear Strength Angle [deg]      | 0                  |
| Air Entry Value [psf]                       | 0                  |
| Ks [feet/day]                               | 10                 |
| K2/K1                                       | 1                  |
| K Angle [deg]                               | 0                  |
| Groundwater Model                           | Simple             |
| GW Model Properties                         | Soil Type: General |
| Unsat. Shear Strength Phi b [deg]           | 0                  |
| Unsat. Shear Strength Air Entry Value [psf] | 0                  |
| Native Sand                                 |                    |
| Color                                       |                    |
| Strength Type                               | Mohr-Coulomb       |
| Unit Weight [lbs/ft3]                       | 105                |
| Cohesion [psf]                              | 0                  |
| Friction Angle [deg]                        | 32                 |
| Unsaturated Shear Strength Angle [deg]      | 0                  |
| Air Entry Value [psf]                       | 0                  |
| Ks [feet/day]                               | 15                 |
| K2/K1                                       | 1                  |
| K Angle [deg]                               | 0                  |
| Groundwater Model                           | Simple             |
| GW Model Properties                         | Soil Type: General |
| Unsat. Shear Strength Phi b [deg]           | 0                  |
| Unsat. Shear Strength Air Entry Value [psf] | 0                  |
| Gravel                                      |                    |
| Color                                       |                    |
| Strength Type                               | Mohr-Coulomb       |
| Unit Weight [lbs/ft3]                       | 135                |
| Cohesion [psf]                              | 0                  |
| Friction Angle [deg]                        | 35                 |
| Unsaturated Shear Strength Angle [deg]      | 0                  |
| Air Entry Value [psf]                       | 0                  |
| Ks [feet/day]                               | 75                 |
| K2/K1                                       | 1                  |
| K Angle [deg]                               | 0                  |
| Groundwater Model                           | Simple             |
| GW Model Properties                         | Soil Type: General |
| Unsat. Shear Strength Phi b [deg]           | 0                  |
| Unsat. Shear Strength Air Entry Value [psf] | 0                  |
| Materials In Use                            |                    |

| Materia<br>I | Static -<br>2H:1V<br>Fill<br>Slope | Seismic<br>- 2H:1V<br>Fill<br>Slope | Static -<br>2H:1V<br>Cut<br>Slope | Seismic<br>- 2H:1V<br>Cut<br>Slope | Static -<br>2.2H:1<br>V Cut<br>Slope | Seismic<br>-<br>2.2H:1<br>V Cut<br>Slope | Static -<br>2H:1V<br>Cut<br>Slope -<br>High<br>GWT | Seismic<br>- 2H:1V<br>Cut<br>slope -<br>High<br>GWT | 2H:1V<br>Cut<br>Slope -<br>High<br>GWT<br>Solutio<br>n | 2.2H:1<br>V Cut<br>Slope -<br>Very<br>High<br>GWT<br>Solutio<br>n |
|--------------|------------------------------------|-------------------------------------|-----------------------------------|------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Fill         | 1                                  | 1                                   | $\times$                          | X                                  | X                                    | $\times$                                 | X                                                  | X                                                   | X                                                      | X                                                                 |
| Native Sa    | 1                                  | 1                                   | 1                                 | 1                                  | 1                                    | 1                                        | 1                                                  | 1                                                   | 1                                                      | 1                                                                 |
| Gravel       | X                                  | X                                   | X                                 | X                                  | X                                    | X                                        | X                                                  | X                                                   | 1                                                      | 1                                                                 |

# **Global Minimums**

### Static - 2H:1V Fill Slope

#### **Method: bishop simplified**

| FS                           |                 | 1.349310 |  |
|------------------------------|-----------------|----------|--|
| Center:                      | 71.860, 163.788 |          |  |
| Radius:                      | 114.363         |          |  |
| Left Slip Surface Endpoint:  | 122.297, 61.149 |          |  |
| Right Slip Surface Endpoint: | 123.709, 61.854 |          |  |
| Resisting Moment:            | 23.7087 lb-ft   |          |  |
| Driving Moment:              | 17.571 lb-ft    |          |  |
| Total Slice Area:            | 0.002863 ft2    |          |  |
| Surface Horizontal Width:    | 1.41155 ft      |          |  |
| Surface Average Height:      | 0.00202826 ft   |          |  |
| Method: janbu simplified     |                 |          |  |
| FS                           |                 | 1.349030 |  |
| Center:                      | 71.860, 163.788 |          |  |
| Radius:                      | 114.363         |          |  |
| Left Slip Surface Endpoint:  | 122.297, 61.149 |          |  |
| Right Slip Surface Endpoint: | 123.709, 61.854 |          |  |
| Resisting Horizontal Force:  | 0.185388 lb     |          |  |
| Driving Horizontal Force:    | 0.137423 lb     |          |  |
| Total Slice Area:            | 0.002863 ft2    |          |  |
| Surface Horizontal Width:    | 1.41155 ft      |          |  |
| Surface Average Height:      | 0.00202826 ft   |          |  |
| ismic - 2H:1V Fill Slope     |                 |          |  |
| Method: bishop simplified    |                 |          |  |
| FS                           |                 | 1.012010 |  |
| Center:                      | 71.860, 163.788 |          |  |
| Radius:                      | 114.363         |          |  |
| Left Slip Surface Endpoint:  | 122.297, 61.149 |          |  |
| Right Slip Surface Endpoint: | 123.709, 61.854 |          |  |

| Left Silp Surface Endpoint:  | 122.297, 01.149 |
|------------------------------|-----------------|
| Right Slip Surface Endpoint: | 123.709, 61.854 |
| Resisting Moment:            | 23.3655 lb-ft   |
| Driving Moment:              | 23.0882 lb-ft   |
| Total Slice Area:            | 0.002863 ft2    |
| Surface Horizontal Width:    | 1.41155 ft      |
| Surface Average Height:      | 0.00202826 ft   |
|                              |                 |

| FS                           | 1.012750        |
|------------------------------|-----------------|
| Center:                      | 71.860, 163.788 |
| Radius:                      | 114.363         |
| Left Slip Surface Endpoint:  | 122.297, 61.149 |
| Right Slip Surface Endpoint: | 123.709, 61.854 |
| Resisting Horizontal Force:  | 0.182849 lb     |
| Driving Horizontal Force:    | 0.180547 lb     |
| Total Slice Area:            | 0.002863 ft2    |
| Surface Horizontal Width:    | 1.41155 ft      |
| Surface Average Height:      | 0.00202826 ft   |

#### Static - 2H:1V Cut Slope

#### **Method: bishop simplified**

| FS                           | 1.250390        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Moment:            | 18.782 lb-ft    |
| Driving Moment:              | 15.0209 lb-ft   |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

#### Method: janbu simplified

| FS                           | 1.249750        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Horizontal Force:  | 0.144986 lb     |
| Driving Horizontal Force:    | 0.116012 lb     |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

### Seismic - 2H:1V Cut Slope

#### Method: bishop simplified

| FS                           | 0.938334        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Moment:            | 18.5203 lb-ft   |
| Driving Moment:              | 19.7374 lb-ft   |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

| FS                           | 0.938491        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Horizontal Force:  | 0.143167 lb     |
| Driving Horizontal Force:    | 0.15255 lb      |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

#### Static - 2.2H:1V Cut Slope

#### **Method: bishop simplified**

| FS                           | 1.375700        |
|------------------------------|-----------------|
| Center:                      | 66.215, 191.039 |
| Radius:                      | 142.380         |
| Left Slip Surface Endpoint:  | 124.430, 61.104 |
| Right Slip Surface Endpoint: | 125.832, 61.742 |
| Resisting Moment:            | 18.2118 lb-ft   |
| Driving Moment:              | 13.2382 lb-ft   |
| Total Slice Area:            | 0.00213994 ft2  |
| Surface Horizontal Width:    | 1.40265 ft      |
| Surface Average Height:      | 0.00152564 ft   |

#### Method: janbu simplified

| FS                           | 1.374720        |
|------------------------------|-----------------|
| Center:                      | 66.168, 191.362 |
| Radius:                      | 142.694         |
| Left Slip Surface Endpoint:  | 124.457, 61.117 |
| Right Slip Surface Endpoint: | 125.972, 61.805 |
| Resisting Horizontal Force:  | 0.146435 lb     |
| Driving Horizontal Force:    | 0.106519 lb     |
| Total Slice Area:            | 0.00269297 ft2  |
| Surface Horizontal Width:    | 1.51546 ft      |
| Surface Average Height:      | 0.001777 ft     |

#### Seismic - 2.2H:1V Cut Slope

#### Method: bishop simplified

| FS                           | 1.017160        |
|------------------------------|-----------------|
| Center:                      | 66.215, 191.039 |
| Radius:                      | 142.380         |
| Left Slip Surface Endpoint:  | 124.430, 61.104 |
| Right Slip Surface Endpoint: | 125.832, 61.742 |
| Resisting Moment:            | 18.0462 lb-ft   |
| Driving Moment:              | 17.7418 lb-ft   |
| Total Slice Area:            | 0.00213994 ft2  |
| Surface Horizontal Width:    | 1.40265 ft      |
| Surface Average Height:      | 0.00152564 ft   |

| FS                           | 1.017960        |
|------------------------------|-----------------|
| Center:                      | 66.215, 191.039 |
| Radius:                      | 142.380         |
| Left Slip Surface Endpoint:  | 124.430, 61.104 |
| Right Slip Surface Endpoint: | 125.832, 61.742 |
| Resisting Horizontal Force:  | 0.115459 lb     |
| Driving Horizontal Force:    | 0.113422 lb     |
| Total Slice Area:            | 0.00213994 ft2  |
| Surface Horizontal Width:    | 1.40265 ft      |
| Surface Average Height:      | 0.00152564 ft   |

#### Static - 2H:1V Cut Slope - High GWT

#### **Method: bishop simplified**

| FS                           | 1.192890        |
|------------------------------|-----------------|
| Center:                      | 100.525, 56.775 |
| Radius:                      | 7.199           |
| Left Slip Surface Endpoint:  | 98.090, 50.000  |
| Right Slip Surface Endpoint: | 106.914, 53.457 |
| Resisting Moment:            | 2765.51 lb-ft   |
| Driving Moment:              | 2318.33 lb-ft   |
| Total Slice Area:            | 8.2456 ft2      |
| Surface Horizontal Width:    | 8.824 ft        |
| Surface Average Height:      | 0.934451 ft     |

#### Method: janbu simplified

| FS                           | 1.067370        |
|------------------------------|-----------------|
| Center:                      | 101.359, 54.735 |
| Radius:                      | 5.622           |
| Left Slip Surface Endpoint:  | 98.329, 50.000  |
| Right Slip Surface Endpoint: | 106.822, 53.411 |
| Resisting Horizontal Force:  | 428.083 lb      |
| Driving Horizontal Force:    | 401.064 lb      |
| Total Slice Area:            | 12.2555 ft2     |
| Surface Horizontal Width:    | 8.49357 ft      |
| Surface Average Height:      | 1.44292 ft      |

### Seismic - 2H:1V Cut slope - High GWT

#### Method: bishop simplified

| FS                           | 0.893788        |
|------------------------------|-----------------|
| Center:                      | 100.308, 56.729 |
| Radius:                      | 7.230           |
| Left Slip Surface Endpoint:  | 97.663, 50.000  |
| Right Slip Surface Endpoint: | 106.700, 53.350 |
| Resisting Moment:            | 2704.66 lb-ft   |
| Driving Moment:              | 3026.07 lb-ft   |
| Total Slice Area:            | 8.23989 ft2     |
| Surface Horizontal Width:    | 9.0369 ft       |
| Surface Average Height:      | 0.911805 ft     |

| FS                           | 0.799098        |
|------------------------------|-----------------|
| Center:                      | 100.932, 56.174 |
| Radius:                      | 6.950           |
| Left Slip Surface Endpoint:  | 97.740, 50.000  |
| Right Slip Surface Endpoint: | 107.433, 53.716 |
| Resisting Horizontal Force:  | 458.536 lb      |
| Driving Horizontal Force:    | 573.817 lb      |
| Total Slice Area:            | 12.5327 ft2     |
| Surface Horizontal Width:    | 9.69264 ft      |
| Surface Average Height:      | 1.29301 ft      |

#### 2H:1V Cut Slope - High GWT Solution

#### **Method: bishop simplified**

| FS                           | 0.938334        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Moment:            | 18.5203 lb-ft   |
| Driving Moment:              | 19.7374 lb-ft   |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

#### Method: janbu simplified

| FS                           | 0.938491        |
|------------------------------|-----------------|
| Center:                      | 71.509, 165.229 |
| Radius:                      | 115.809         |
| Left Slip Surface Endpoint:  | 122.598, 61.299 |
| Right Slip Surface Endpoint: | 124.000, 62.000 |
| Resisting Horizontal Force:  | 0.143167 lb     |
| Driving Horizontal Force:    | 0.15255 lb      |
| Total Slice Area:            | 0.00276221 ft2  |
| Surface Horizontal Width:    | 1.4018 ft       |
| Surface Average Height:      | 0.00197047 ft   |

### 2.2H:1V Cut Slope - Very High GWT Solution

#### Method: bishop simplified

| FS                           | 1.017160        |
|------------------------------|-----------------|
| Center:                      | 66.215, 191.039 |
| Radius:                      | 142.380         |
| Left Slip Surface Endpoint:  | 124.430, 61.104 |
| Right Slip Surface Endpoint: | 125.832, 61.742 |
| Resisting Moment:            | 18.0462 lb-ft   |
| Driving Moment:              | 17.7418 lb-ft   |
| Total Slice Area:            | 0.00213994 ft2  |
| Surface Horizontal Width:    | 1.40265 ft      |
| Surface Average Height:      | 0.00152564 ft   |

| FS                           | 0.947840        |
|------------------------------|-----------------|
| Center:                      | 107.134, 68.855 |
| Radius:                      | 20.369          |
| Left Slip Surface Endpoint:  | 99.427, 50.000  |
| Right Slip Surface Endpoint: | 126.298, 61.954 |
| Resisting Horizontal Force:  | 5526.95 lb      |
| Driving Horizontal Force:    | 5831.1 lb       |
| Total Slice Area:            | 123.88 ft2      |
| Surface Horizontal Width:    | 26.8707 ft      |
| Surface Average Height:      | 4.61022 ft      |

# APPENDIX D Liquefaction Assessment

| LIQUEF                                                                                                         | ACTION ASS                                     | ESSMENT                |              |                |                                                                                              |                    |                  |                                                                            |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              |              |              |            |            |  |  |  |     |    |    |     |   |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|--------------|----------------|----------------------------------------------------------------------------------------------|--------------------|------------------|----------------------------------------------------------------------------|----------|----------------|-------------------|----------|--------------------------|--------------|----------------|----------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------------|----------------------|--------------------|--------------|--------------|--------------|------------------|----------------|----------------|----------------|----------------------|---------|----------------------|--------------|----------|--------------|--------------|--------------|------------|------------|--|--|--|-----|----|----|-----|---|
| PROJECT                                                                                                        | Wallula Gap Bus                                | siness Park Roads 2023 | 3            |                | Design Earthquake                                                                            | •                  |                  |                                                                            |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              | 2            | and          | ers        | on         |  |  |  |     |    |    |     |   |
| LUCATION                                                                                                       |                                                | any, wa                |              |                | Probability of<br>Exceedance                                                                 | Return<br>Period   | a <sub>max</sub> | Mw                                                                         |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              | Űř           | berr         | v          |            |  |  |  |     |    |    |     |   |
| Site Parama                                                                                                    | ters                                           |                        |              |                | 1011 : 50                                                                                    | (yrs)              | (g)              |                                                                            |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              | 8 7          | assoc        | iates,     | inc.       |  |  |  |     |    |    |     |   |
| Type:<br>Shear Wave                                                                                            | Velocity, V <sub>s</sub> <sup>30</sup> (ft/s): |                        | PGA<br>1,200 |                | 5% in 50 years                                                                               | 475 yrs<br>975 yrs | 0.101<br>0.156   | 6.34<br>6.47                                                               |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              |              |              |            |            |  |  |  |     |    |    |     |   |
| le de la companya de | 0 - m diti - m -                               |                        |              | •              | 2% in 50 years                                                                               | 2,475 yrs          | 0.262            | 6.70                                                                       |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          | Total Fatier |              |              | 10-00      |            |  |  |  |     |    |    |     |   |
| GWT Depth                                                                                                      | (Analysis):                                    |                        | 15           |                | SPT Correction Fac                                                                           | ctors              |                  |                                                                            | 1        |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              | 475-ye   | ar event     | 975-yea      | ar event     | 2,475-yea  | ar event   |  |  |  |     |    |    |     |   |
| GWT Depth                                                                                                      | (Field):                                       |                        | 15<br>1      |                | C <sub>E</sub> =<br>C <sub>D</sub> =                                                         | 1.24               | (Automatic Har   | mmer E=84%)                                                                |          |                |                   |          |                          |              |                |                                                                |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              | Settleme | nt (inches)  | Settlemen    | it (inches)  | Settlement | (inches)   |  |  |  |     |    |    |     |   |
| Deptilinterva                                                                                                  | ii (ieet).                                     |                        |              | J              | C <sub>B</sub> = 1.15 (<5-inch Diameter Boring)<br>C <sub>S</sub> = 1.00 (Standard Sampling) |                    |                  | $C_B = 1.15$ (<5-inch Diameter Boring)<br>$C_S = 1.00$ (Standard Sampling) |          |                | tandard Sampling) |          | 1.00 (Standard Sampling) |              |                | = 1.15 (<5-inch Diameter Boring)<br>= 1.00 (Standard Sampling) |                |                |                |                |                       |                      |                    |              |              |              |                  |                |                |                |                      |         |                      |              |          |              |              |              |            |            |  |  |  | J.O | 0. | .0 | 0.0 | , |
| Top Depth (                                                                                                    | f Bottom Depth                                 |                        | <b>T</b>     | 1              |                                                                                              | 1                  | 1                | 1                                                                          | -        |                |                   |          |                          |              | _              |                                                                | - I            |                |                |                |                       |                      |                    |              | -            |              | - T              |                | _              | - T            | _                    | -       | 1                    | <u> </u>     |          |              |              |              |            |            |  |  |  |     |    |    |     |   |
| Layer                                                                                                          | of Layer                                       | Soil Classification    | γ            | u              | σν                                                                                           | σ'v                | u <sub>o</sub>   | σ' <sub>v0</sub>                                                           | SPT      | C <sub>R</sub> | N <sub>60</sub>   | Fines    | ∆(N1) <sub>60</sub>      | m            | C <sub>N</sub> | (N1) <sub>60</sub>                                             | (N1)60CS       | C <sub>σ</sub> | κ <sub>σ</sub> | K <sub>σ</sub> | $\alpha_{\text{MSF}}$ | $\beta_{\text{MSF}}$ | MSF <sub>max</sub> | MSF          | MSF          | MSF          | α <sub>rd</sub>  | $\beta_{rd}$   | r <sub>d</sub> | r <sub>d</sub> | r <sub>d</sub> C:    | SR CS   | R CSR                | CRR          | CRR      | CRR          | CRR          | FS           | FS         | FS         |  |  |  |     |    |    |     |   |
| (feet)                                                                                                         | (feet)                                         | (USCS)                 | (pcf)        | (psf)          | (psf)                                                                                        | (psf)              | (psf)            | (psf)                                                                      | 12       | 0.75           | 12.0              | (%)      | 1 15                     | 0.42         | 1.60           | 20.97                                                          | 22.02          | 0.14           | 1 52           | 1 10           | 0.97                  | 1.0                  | 1 5 9              | 475 yrs      | 975 yrs      | 2,475 yrs    | 0.010            | 0.001          | 475 yrs        | 975 yrs 2,4    | 75 yrs 475           | yrs 975 | yrs 2,475 y          | rs M=7.5     | 475 yrs  | 975 yrs      | 2,475 yrs    | 475 yrs      | 975 yrs    | 2,475 yrs  |  |  |  |     |    |    |     |   |
| 1                                                                                                              | 2                                              | SP-SM                  | 110          | 0              | 165                                                                                          | 165                | 0                | 165                                                                        | 12       | 0.75           | 13.0              | 10       | 1.15                     | 0.43         | 1.60           | 20.87                                                          | 22.02          | 0.14           | 1.33           | 1.10           | 0.87                  | 1.0                  | 1.58               | 1.26         | 1.23         | 1.17         | -0.003           | 0.001          | 1.00           | 1.00           | 1.00 0.0             | 066 0.1 | 0.171                | 0.23         | 0.32     | 0.31         | 0.30         | 4.9          | 3.1        | 1.8        |  |  |  |     |    |    |     |   |
| 2                                                                                                              | 3<br>4                                         | SP-SM<br>SP-SM         | 110<br>110   | 0              | 275<br>385                                                                                   | 275<br>385         | 0                | 275<br>385                                                                 | 12<br>13 | 0.75<br>0.75   | 13.2<br>13.4      | 10<br>10 | 1.15<br>1.15             | 0.42         | 1.60<br>1.60   | 21.13<br>21.42                                                 | 22.27<br>22.57 | 0.15<br>0.15   | 1.30<br>1.25   | 1.10<br>1.10   | 0.87<br>0.87          | 1.0<br>1.0           | 1.59<br>1.60       | 1.26<br>1.27 | 1.23<br>1.23 | 1.17<br>1.18 | -0.016<br>-0.030 | 0.002          | 1.00<br>0.99   | 1.00<br>0.99   | 1.00 0.0<br>1.00 0.0 | 065 0.1 | 0.170                | 0.24         | 0.33     | 0.32         | 0.31<br>0.31 | 5.0<br>5.2   | 3.2<br>3.3 | 1.8<br>1.8 |  |  |  |     |    |    |     |   |
| 4                                                                                                              | 5                                              | SP-SM                  | 110          | 0              | 495                                                                                          | 495                | 0                | 495                                                                        | 13       | 0.75           | 13.7              | 10       | 1.15                     | 0.42         | 1.59           | 21.75                                                          | 22.90          | 0.15           | 1.22           | 1.10           | 0.87                  | 1.0                  | 1.62               | 1.28         | 1.24         | 1.18         | -0.045           | 0.005          | 0.99           | 0.99           | 0.99 0.0             | 065 0.1 | 00 0.169             | 0.25         | 0.35     | 0.34         | 0.32         | 5.4          | 3.4        | 1.9        |  |  |  |     |    |    |     |   |
| 5                                                                                                              | 6<br>7                                         | SP-SM<br>SP-SM         | 110<br>115   | 0              | 605<br>718                                                                                   | 605<br>718         | 0                | 605<br>718                                                                 | 13<br>13 | 0.75           | 13.9<br>14.4      | 10<br>10 | 1.15                     | 0.42         | 1.59<br>1.57   | 22.10<br>22.51                                                 | 23.25 23.66    | 0.15           | 1.19<br>1.17   | 1.10<br>1.10   | 0.87                  | 1.0<br>1.0           | 1.63<br>1.65       | 1.28<br>1.29 | 1.25         | 1.19<br>1.19 | -0.060<br>-0.076 | 0.007          | 0.99           | 0.99           | 0.99 0.0             | 064 0.1 | 00 0.168             | 0.25         | 0.36     | 0.35         | 0.33         | 5.6<br>5.8   | 3.5<br>3.6 | 2.0        |  |  |  |     |    |    |     |   |
| 7                                                                                                              | 8                                              | SP-SM                  | 115          | 0              | 833                                                                                          | 833                | 0                | 833                                                                        | 15       | 0.75           | 15.8              | 10       | 1.15                     | 0.41         | 1.46           | 23.13                                                          | 24.28          | 0.16           | 1.15           | 1.10           | 0.87                  | 1.0                  | 1.68               | 1.30         | 1.27         | 1.20         | -0.093           | 0.011          | 0.98           | 0.98           | 0.98 0.0             | 064 0.0 | 0.167                | 0.27         | 0.39     | 0.38         | 0.36         | 6.2          | 3.9        | 2.2        |  |  |  |     |    |    |     |   |
| 8                                                                                                              | 10                                             | SP-SM<br>SP-SM         | 115          | 0              | 948<br>1,063                                                                                 | 948<br>1,063       | 0                | 948<br>1,063                                                               | 16<br>17 | 0.75           | 17.2<br>18.6      | 10       | 1.15                     | 0.40         | 1.38           | 23.77<br>24.43                                                 | 24.92 25.58    | 0.16           | 1.13<br>1.11   | 1.10           | 0.87                  | 1.0                  | 1.72               | 1.32         | 1.28         | 1.21<br>1.22 | -0.110<br>-0.128 | 0.013          | 0.97           | 0.97           | 0.98 0.0             | 063 0.0 | 98 0.166<br>98 0.165 | 0.29         | 0.42     | 0.41         | 0.38         | 6.6<br>7.1   | 4.1<br>4.4 | 2.3        |  |  |  |     |    |    |     |   |
| 10                                                                                                             | 11                                             | SP-SM                  | 115          | 0              | 1,178                                                                                        | 1,178              | 0                | 1,178                                                                      | 17       | 0.80           | 20.0              | 10       | 1.15                     | 0.39         | 1.26           | 25.10                                                          | 26.25          | 0.17           | 1.10           | 1.10           | 0.87                  | 1.0                  | 1.78               | 1.35         | 1.31         | 1.23         | -0.146           | 0.017          | 0.96           | 0.96           | 0.97 0.0             | 063 0.0 | 0.165                | 0.32         | 0.48     | 0.46         | 0.44         | 7.6          | 4.8        | 2.7        |  |  |  |     |    |    |     |   |
| 11                                                                                                             | 12                                             | SP-SIVI                | 115          | 0              | 1,293                                                                                        | 1,295              | 0                | 1,295                                                                      | 20       | 0.80           | 21.3              | 10       | 1.15                     | 0.39         | 1.21           | 26.52                                                          | 20.95          | 0.18           | 1.09           | 1.09           | 0.87                  | 1.0                  | 1.82               | 1.37         | 1.32         | 1.24         | -0.185           | 0.019          | 0.95           | 0.95           | 0.96 0.0             | 062 0.0 | 0.163                | 0.34         | 0.51     | 0.49         | 0.47         | 8.2          | 5.5        | 3.1        |  |  |  |     |    |    |     |   |
| 13                                                                                                             | 14                                             | SP-SM<br>SP-SM         | 115          | 0              | 1,523                                                                                        | 1,523              | 0                | 1,523                                                                      | 20       | 0.85           | 24.1              | 10<br>10 | 1.15                     | 0.38         | 1.13           | 27.26                                                          | 28.40          | 0.19           | 1.06           | 1.06           | 0.87                  | 1.0                  | 1.90               | 1.40         | 1.35         | 1.26         | -0.205           | 0.023          | 0.94           | 0.95           | 0.95 0.0             | 062 0.0 | 0.162                | 0.40         | 0.60     | 0.58         | 0.54         | 9.7          | 6.0        | 3.3        |  |  |  |     |    |    |     |   |
| 15                                                                                                             | 15                                             | SP-SM                  | 125          | 31             | 1,758                                                                                        | 1,726              | 31               | 1,726                                                                      | 22       | 0.85           | 26.7              | 10       | 1.15                     | 0.36         | 1.08           | 28.74                                                          | 29.89          | 0.20           | 1.05           | 1.03           | 0.87                  | 1.0                  | 1.99               | 1.44         | 1.39         | 1.29         | -0.247           | 0.028          | 0.93           | 0.94           | 0.94 0.0             | 062 0.0 | 0.163                | 0.48         | 0.72     | 0.69         | 0.64         | 11.5         | 7.2        | 3.9        |  |  |  |     |    |    |     |   |
| 16<br>17                                                                                                       | 17<br>18                                       | SP-SM<br>SP-SM         | 125<br>125   | 94<br>156      | 1,883                                                                                        | 1,789<br>1.852     | 94<br>156        | 1,789<br>1.852                                                             | 23<br>24 | 0.85           | 27.7<br>28.7      | 10<br>10 | 1.15<br>1.15             | 0.36         | 1.06<br>1.05   | 29.42<br>30.12                                                 | 30.57<br>31.27 | 0.21           | 1.03<br>1.03   | 1.03<br>1.03   | 0.87                  | 1.0<br>1.0           | 2.03<br>2.08       | 1.46<br>1.48 | 1.40<br>1.42 | 1.30<br>1.32 | -0.268<br>-0.291 | 0.030          | 0.93           | 0.93           | 0.94 0.0             | 064 0.0 | 0.168                | 0.48         | 0.73     | 0.70         | 0.65         | 11.5<br>11.3 | 7.1<br>7.0 | 3.9<br>3.8 |  |  |  |     |    |    |     |   |
| 18                                                                                                             | 19                                             | SP-SM                  | 125          | 218            | 2,133                                                                                        | 1,914              | 218              | 1,914                                                                      | 25       | 0.85           | 29.8              | 10       | 1.15                     | 0.35         | 1.04           | 30.84                                                          | 31.99          | 0.22           | 1.02           | 1.02           | 0.87                  | 1.0                  | 2.12               | 1.50         | 1.44         | 1.33         | -0.313           | 0.035          | 0.92           | 0.92           | 0.93 0.0             | 067 0.1 | 04 0.176             | 0.48         | 0.74     | 0.71         | 0.66         | 11.2         | 6.9        | 3.7        |  |  |  |     |    |    |     |   |
| 19<br>20                                                                                                       | 20 21                                          | SP-SM<br>SP-SM         | 125<br>125   | 281<br>343     | 2,258<br>2,383                                                                               | 1,977<br>2,039     | 281<br>343       | 1,977<br>2,039                                                             | 25<br>24 | 0.85           | 30.8<br>31.9      | 10<br>10 | 1.15<br>1.15             | 0.34<br>0.34 | 1.02<br>1.01   | 31.58<br>32.34                                                 | 32.73<br>33.48 | 0.23<br>0.24   | 1.02<br>1.01   | 1.02<br>1.01   | 0.87<br>0.87          | 1.0<br>1.0           | 2.17<br>2.20       | 1.52<br>1.54 | 1.46<br>1.47 | 1.34<br>1.35 | -0.336<br>-0.360 | 0.038<br>0.041 | 0.91<br>0.90   | 0.91<br>0.91   | 0.92 0.0             | 068 0.1 | 0.179                | 0.48         | 0.75     | 0.72         | 0.66         | 11.0<br>10.9 | 6.8<br>6.7 | 3.7<br>3.6 |  |  |  |     |    |    |     |   |
| 21                                                                                                             | 22                                             | SP-SM                  | 125          | 406            | 2,508                                                                                        | 2,102              | 406              | 2,102                                                                      | 24       | 0.95           | 33.0              | 10       | 1.15                     | 0.33         | 1.00           | 33.11                                                          | 34.26          | 0.25           | 1.00           | 1.00           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.384           | 0.043          | 0.90           | 0.90           | 0.91 0.0             | 070 0.1 | 0.185                | 0.48         | 0.75     | 0.71         | 0.66         | 10.7         | 6.6        | 3.6        |  |  |  |     |    |    |     |   |
| 22                                                                                                             | 23                                             | SP-SM<br>SP-SM         | 125          | 468<br>530     | 2,633 2,758                                                                                  | 2,165 2,227        | 468<br>530       | 2,165 2,227                                                                | 25       | 0.95           | 34.2<br>35.3      | 10       | 1.15                     | 0.33         | 0.99           | 33.90<br>34.71                                                 | 35.05          | 0.26           | 0.99           | 0.99           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.409<br>-0.434 | 0.046          | 0.89           | 0.90           | 0.90 0.0             | 0.1     | LO 0.187             | 0.48         | 0.74     | 0.71         | 0.65         | 10.5         | 6.4<br>6.3 | 3.5<br>3.4 |  |  |  |     |    |    |     |   |
| 24                                                                                                             | 25                                             | SP-SM                  | 125          | 593            | 2,883                                                                                        | 2,290              | 593              | 2,290                                                                      | 27       | 0.95           | 36.4              | 10       | 1.15                     | 0.32         | 0.98           | 35.54                                                          | 36.69          | 0.29           | 0.98           | 0.98           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.459           | 0.052          | 0.88           | 0.88           | 0.89 0.0             | 0.1     | 0.191                | 0.48         | 0.73     | 0.70         | 0.64         | 10.1         | 6.2        | 3.3        |  |  |  |     |    |    |     |   |
| 26                                                                                                             | 20                                             | SP-SM                  | 125          | 718            | 3,133                                                                                        | 2,415              | 718              | 2,415                                                                      | 29       | 0.95           | 38.8              | 10       | 1.15                     | 0.31         | 0.96           | 37.26                                                          | 38.41          | 0.30           | 0.96           | 0.96           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.511           | 0.057          | 0.86           | 0.87           | 0.88 0.0             | 073 0.1 | 14 0.195             | 0.48         | 0.72     | 0.68         | 0.63         | 9.8          | 6.0        | 3.2        |  |  |  |     |    |    |     |   |
| 27                                                                                                             | 28                                             | SP-SM<br>SP-SM         | 125          | 780<br>842     | 3,258                                                                                        | 2,478<br>2 540     | 780<br>842       | 2,478                                                                      | 30<br>30 | 0.95           | 40.0<br>41.2      | 10<br>10 | 1.15                     | 0.30         | 0.95           | 38.15<br>39.06                                                 | 39.30<br>40.21 | 0.30           | 0.95           | 0.95           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47<br>1.47 | 1.35         | -0.537<br>-0.564 | 0.060          | 0.86           | 0.86           | 0.88 0.0             | 074 0.1 | L5 0.196             | 0.48         | 0.71     | 0.68         | 0.63         | 9.6<br>9.5   | 5.9<br>5.8 | 3.2        |  |  |  |     |    |    |     |   |
| 29                                                                                                             | 30                                             | SP-SM                  | 125          | 905            | 3,508                                                                                        | 2,603              | 905              | 2,603                                                                      | 31       | 0.95           | 42.5              | 10       | 1.15                     | 0.29         | 0.94           | 39.99                                                          | 41.14          | 0.30           | 0.94           | 0.94           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.591           | 0.066          | 0.84           | 0.85           | 0.86 0.0             | 074 0.1 | 16 0.198             | 0.48         | 0.70     | 0.67         | 0.62         | 9.4          | 5.8        | 3.1        |  |  |  |     |    |    |     |   |
| 30<br>31                                                                                                       | 31<br>32                                       | SP-SM<br>SP-SM         | 125<br>125   | 967<br>1.030   | 3,633<br>3.758                                                                               | 2,665<br>2,728     | 967<br>1.030     | 2,665                                                                      | 32<br>33 | 0.95           | 43.7<br>45.0      | 10<br>10 | 1.15<br>1.15             | 0.29<br>0.28 | 0.94<br>0.93   | 40.95<br>41.93                                                 | 42.10<br>43.08 | 0.30<br>0.30   | 0.93<br>0.93   | 0.93<br>0.93   | 0.87<br>0.87          | 1.0<br>1.0           | 2.20<br>2.20       | 1.54<br>1.54 | 1.47<br>1.47 | 1.35<br>1.35 | -0.618<br>-0.645 | 0.069          | 0.84<br>0.83   | 0.84<br>0.84   | 0.86 0.0<br>0.85 0.0 | 075 0.1 | 16 0.199<br>17 0.200 | 0.48         | 0.69     | 0.66         | 0.61         | 9.3<br>9.2   | 5.7<br>5.6 | 3.1<br>3.0 |  |  |  |     |    |    |     |   |
| 32                                                                                                             | 33                                             | SP-SM                  | 125          | 1,092          | 3,883                                                                                        | 2,791              | 1,092            | 2,791                                                                      | 34       | 0.95           | 46.3              | 10       | 1.15                     | 0.28         | 0.93           | 42.93                                                          | 44.08          | 0.30           | 0.92           | 0.92           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.673           | 0.075          | 0.82           | 0.83           | 0.84 0.0             | 075 0.1 | 0.200                | 0.48         | 0.68     | 0.65         | 0.60         | 9.1          | 5.6        | 3.0        |  |  |  |     |    |    |     |   |
| 33                                                                                                             | 34<br>35                                       | SP-SM<br>SP-SM         | 125          | 1,154 1,217    | 4,008 4,133                                                                                  | 2,853 2,916        | 1,154 1,217      | 2,853 2,916                                                                | 33<br>34 | 1.00           | 47.6<br>49.0      | 10       | 1.15                     | 0.27         | 0.92           | 43.96<br>45.01                                                 | 45.11<br>46.16 | 0.30           | 0.91<br>0.91   | 0.91<br>0.91   | 0.87                  | 1.0                  | 2.20 2.20          | 1.54<br>1.54 | 1.47         | 1.35         | -0.701<br>-0.729 | 0.078          | 0.82           | 0.82           | 0.84 0.0             | 0.1     | L7 0.201<br>L7 0.201 | 0.48         | 0.68     | 0.65         | 0.60         | 9.1<br>9.0   | 5.5        | 3.0        |  |  |  |     |    |    |     |   |
| 35                                                                                                             | 36                                             | SP-SM                  | 125          | 1,279          | 4,258                                                                                        | 2,978              | 1,279            | 2,978                                                                      | 35       | 1.00           | 50.3              | 10       | 1.15                     | 0.26         | 0.92           | 46.08                                                          | 47.23          | 0.30           | 0.90           | 0.90           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.758           | 0.085          | 0.80           | 0.81           | 0.83 0.0             | 075 0.1 | 0.201                | 0.48         | 0.67     | 0.64         | 0.59         | 8.9          | 5.5        | 2.9        |  |  |  |     |    |    |     |   |
| 36                                                                                                             | 37                                             | SP-SM<br>SP-SM         | 125          | 1,342          | 4,383 4,510                                                                                  | 3,041 3,106        | 1,342            | 3,041<br>3,106                                                             | 36       | 1.00           | 53.1              | 10       | 1.15                     | 0.25         | 0.91           | 47.19                                                          | 48.34<br>49.48 | 0.30           | 0.89           | 0.89           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.786           | 0.088          | 0.79           | 0.80           | 0.82 0.0             | 075 0.1 | L7 0.201             | 0.48         | 0.66     | 0.64         | 0.59         | 8.9<br>8.8   | 5.4<br>5.4 | 2.9        |  |  |  |     |    |    |     |   |
| 38                                                                                                             | 39                                             | SP-SM<br>SP-SM         | 130<br>130   | 1,466          | 4,640                                                                                        | 3,174              | 1,466            | 3,174                                                                      | 38       | 1.00           | 54.6<br>56.0      | 10<br>10 | 1.15                     | 0.24         | 0.91           | 49.51<br>50.72                                                 | 50.66<br>51.87 | 0.30           | 0.88           | 0.88           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.844           | 0.094          | 0.78           | 0.79           | 0.81 0.0             | 075 0.1 | 0.201                | 0.48         | 0.66     | 0.63         | 0.58         | 8.8<br>8.7   | 5.4        | 2.9        |  |  |  |     |    |    |     |   |
| 40                                                                                                             | 40                                             | SP-SM                  | 130          | 1,525          | 4,900                                                                                        | 3,309              | 1,591            | 3,309                                                                      | 40       | 1.00           | 57.5              | 10       | 1.15                     | 0.23         | 0.90           | 51.96                                                          | 53.11          | 0.30           | 0.87           | 0.87           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.902           | 0.100          | 0.77           | 0.78           | 0.80 0.0             | 074 0.1 | 16 0.201             | 0.48         | 0.65     | 0.62         | 0.57         | 8.7          | 5.3        | 2.8        |  |  |  |     |    |    |     |   |
| 41 42                                                                                                          | 42                                             | SP-SM<br>SP-SM         | 130<br>130   | 1,654<br>1,716 | 5,030<br>5,160                                                                               | 3,376<br>3,444     | 1,654<br>1,716   | 3,376<br>3,444                                                             | 41<br>42 | 1.00<br>1.00   | 59.0<br>60.6      | 10<br>10 | 1.15<br>1.15             | 0.22         | 0.90<br>0.90   | 53.23<br>54,53                                                 | 54.38<br>55.68 | 0.30<br>0.30   | 0.86           | 0.86<br>0.86   | 0.87<br>0.87          | 1.0<br>1.0           | 2.20<br>2.20       | 1.54<br>1.54 | 1.47<br>1.47 | 1.35<br>1.35 | -0.931<br>-0.960 | 0.104<br>0.107 | 0.76           | 0.77           | 0.79 0.0<br>0.78 0.0 | 074 0.1 | L6 0.200             | 0.48         | 0.64     | 0.61         | 0.57         | 8.7<br>8.6   | 5.3<br>5.3 | 2.8        |  |  |  |     |    |    |     |   |
| 43                                                                                                             | 44                                             | SP-SM                  | 130          | 1,778          | 5,290                                                                                        | 3,512              | 1,778            | 3,512                                                                      | 44       | 1.00           | 62.1              | 10       | 1.15                     | 0.21         | 0.90           | 55.87                                                          | 57.02          | 0.30           | 0.85           | 0.85           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -0.990           | 0.110          | 0.75           | 0.76           | 0.78 0.0             | 074 0.1 | 15 0.199             | 0.48         | 0.63     | 0.61         | 0.56         | 8.6          | 5.2        | 2.8        |  |  |  |     |    |    |     |   |
| 44<br>45                                                                                                       | 45<br>46                                       | SP-SM<br>SP-SM         | 130<br>130   | 1,841<br>1,903 | 5,420<br>5,550                                                                               | 3,579<br>3,647     | 1,841<br>1,903   | 3,579<br>3,647                                                             | 45<br>46 | 1.00<br>1.00   | 63.7<br>65.3      | 10<br>10 | 1.15<br>1.15             | 0.20<br>0.20 | 0.90<br>0.90   | 57.25<br>58.65                                                 | 58.39<br>59.80 | 0.30<br>0.30   | 0.84<br>0.84   | 0.84<br>0.84   | 0.87<br>0.87          | 1.0<br>1.0           | 2.20<br>2.20       | 1.54<br>1.54 | 1.47<br>1.47 | 1.35<br>1.35 | -1.019<br>-1.048 | 0.113<br>0.116 | 0.74<br>0.73   | 0.75<br>0.74   | 0.77 0.0<br>0.76 0.0 | 073 0.1 | L5 0.199<br>L5 0.198 | 0.48         | 0.63     | 0.60         | 0.55         | 8.6<br>8.6   | 5.2<br>5.2 | 2.8<br>2.8 |  |  |  |     |    |    |     |   |
| 46                                                                                                             | 47                                             | SP-SM                  | 130          | 1,966          | 5,680                                                                                        | 3,714              | 1,966            | 3,714                                                                      | 47       | 1.00           | 66.9              | 10       | 1.15                     | 0.19         | 0.90           | 60.10                                                          | 61.25          | 0.30           | 0.83           | 0.83           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -1.077           | 0.120          | 0.73           | 0.74           | 0.76 0.0             | 073 0.1 | 14 0.198             | 0.48         | 0.62     | 0.59         | 0.55         | 8.5          | 5.2        | 2.8        |  |  |  |     |    |    |     |   |
| 47<br>48                                                                                                       | 48<br>49                                       | SP-SM<br>SP-SM         | 130<br>130   | 2,028<br>2,090 | 5,810<br>5,940                                                                               | 3,782<br>3,850     | 2,028 2,090      | 3,782<br>3,850                                                             | 48<br>49 | 1.00<br>1.00   | 68.5<br>70.1      | 10<br>10 | 1.15<br>1.15             | 0.18<br>0.18 | 0.90<br>0.90   | 61.58<br>63.10                                                 | 62.73<br>64.25 | 0.30<br>0.30   | 0.83<br>0.82   | 0.83<br>0.82   | 0.87<br>0.87          | 1.0<br>1.0           | 2.20<br>2.20       | 1.54<br>1.54 | 1.47<br>1.47 | 1.35<br>1.35 | -1.107<br>-1.136 | 0.123<br>0.126 | 0.72<br>0.71   | 0.73           | 0.75 0.0             | 0/2 0.1 | 14 0.197<br>13 0.196 | 0.48<br>0.48 | 0.62     | 0.59         | 0.54 0.54    | 8.5<br>8.5   | 5.2<br>5.2 | 2.8        |  |  |  |     |    |    |     |   |
| 49                                                                                                             | 50                                             | SP-SM                  | 130          | 2,153          | 6,070                                                                                        | 3,917              | 2,153            | 3,917                                                                      | 50       | 1.00           | 71.8              | 10       | 1.15                     | 0.17         | 0.90           | 64.66                                                          | 65.81          | 0.30           | 0.82           | 0.82           | 0.87                  | 1.0                  | 2.20               | 1.54         | 1.47         | 1.35         | -1.165           | 0.129          | 0.71           | 0.72           | 0.74 0.0             | 072 0.1 | 13 0.195             | 0.48         | 0.61     | 0.58         | 0.54         | 8.5          | 5.2        | 2.7        |  |  |  |     |    |    |     |   |

